Package 'JuliaCall'

Title: Seamless Integration Between R and 'Julia'
Description: Provides an R interface to 'Julia', which is a high-level, high-performance dynamic programming language for numerical computing, see <https://julialang.org/> for more information. It provides a high-level interface as well as a low-level interface. Using the high level interface, you could call any 'Julia' function just like any R function with automatic type conversion. Using the low level interface, you could deal with C-level SEXP directly while enjoying the convenience of using a high-level programming language like 'Julia'.
Authors: Changcheng Li [aut, cre], Christopher Rackauckas [ctb], Randy Lai [ctb], Dmitri Grominski [ctb], Nagi Teramo [ctb]
Maintainer: Changcheng Li <[email protected]>
License: MIT + file LICENSE
Version: 0.17.6
Built: 2025-01-06 06:18:55 UTC
Source: https://github.com/Non-Contradiction/JuliaCall

Help Index


Language piper for julia language.

Description

The experimental language piper for julia language.

Usage

obj %>J% func_call

Arguments

obj

the object to pass to the piper.

func_call

the impartial julia function call.

Examples

if (identical(Sys.getenv("AUTO_JULIA_INSTALL"), "true")) { ## julia_setup is quite time consuming
  ## doing initialization and automatic installation of Julia if necessary
  julia_setup(installJulia = TRUE)
  2 %>J% sqrt
  3 %>J% log(2)
}

Use automatic wrapper for julia type.

Description

autowrap tells 'JuliaCall' to use automatic wrapper for julia type.

Usage

autowrap(type, fields = NULL, methods = c())

Arguments

type

the julia type to wrap.

fields

names of fields to be included in the wrapper. If the value is NULL, then every julia fields will be included in the wrapper.

methods

names of methods to be overloaded for the wrapper.


Call julia functions.

Description

julia_do.call is the do.call for julia. And julia_call calls julia functions. For usage of these functions, see documentation of arguments and examples.

Usage

julia_do.call(
  func_name,
  arg_list,
  need_return = c("R", "Julia", "None"),
  show_value = FALSE
)

julia_call(
  func_name,
  ...,
  need_return = c("R", "Julia", "None"),
  show_value = FALSE
)

Arguments

func_name

the name of julia function you want to call. If you add "." after 'func_name', the julia function call will be broadcasted.

arg_list

the list of the arguments you want to pass to the julia function.

need_return

whether you want julia to return value as an R object, a wrapper for julia object or no return. The value of need_return could be TRUE (equal to option "R") or FALSE (equal to option "None"), or one of the options "R", "Julia" and "None".

show_value

whether to invoke the julia display system or not.

...

the arguments you want to pass to the julia function.

Details

Note that named arguments will be discarded if the call uses dot notation, for example, "sqrt.".

Examples

if (identical(Sys.getenv("AUTO_JULIA_INSTALL"), "true")) { ## julia_setup is quite time consuming
  ## doing initialization and automatic installation of Julia if necessary
  julia_setup(installJulia = TRUE)
  julia_do.call("sqrt", list(2))
  julia_call("sqrt", 2)
  julia_call("sqrt.", 1:10)
}

Julia language engine in R Markdown

Description

Julia language engine in R Markdown

Usage

eng_juliacall(options)

Arguments

options

a list of chunk options

Examples

knitr::knit_engines$set(julia = JuliaCall::eng_juliacall)

Install Julia.

Description

Install Julia.

Usage

install_julia(version = "latest", prefix = julia_default_install_dir())

Arguments

version

The version of Julia to install (e.g. "1.6.3"). Defaults to "latest", which will install the most recent stable release.

prefix

the directory where Julia will be installed. If not set, a default location will be determined by rappdirs if it is installed, otherwise an error will be raised.


Assign a value to a name in julia.

Description

julia_assign assigns a value to a name in julia with automatic type conversion.

Usage

julia_assign(x, value)

Arguments

x

a variable name, given as a character string.

value

a value to be assigned to x, note that R value will be converted to corresponding julia value automatically.

Examples

if (identical(Sys.getenv("AUTO_JULIA_INSTALL"), "true")) { ## julia_setup is quite time consuming
  ## doing initialization and automatic installation of Julia if necessary
  julia_setup(installJulia = TRUE)
  julia_assign("x", 2)
  julia_assign("rsqrt", sqrt)
}

Evaluate string commands in julia and (may) invoke the julia display system.

Description

julia_command evaluates string commands in julia without returning the result back to R. However, it may evoke julia display system, see the documentation of the argument 'show_value' for more details. If you need to get the evaluation result in R, you can use julia_eval.

Usage

julia_command(cmd, show_value = !endsWith(trimws(cmd, "right"), ";"))

Arguments

cmd

the command string you want to evaluate in julia.

show_value

whether to display julia returning value or not, the default value is 'FALSE' if the 'cmd' ends with semicolon and 'TRUE' otherwise.

Examples

if (identical(Sys.getenv("AUTO_JULIA_INSTALL"), "true")) { ## julia_setup is quite time consuming
  ## doing initialization and automatic installation of Julia if necessary
  julia_setup(installJulia = TRUE)
  julia_command("a = sqrt(2);")
}

Open julia console.

Description

Open julia console.

Usage

julia_console()

Examples

if (identical(interactive(), TRUE)) { ## julia_setup is quite time consuming
  julia_console()
}

Evaluate string commands in julia and get the result back in R.

Description

julia_eval evaluates string commands in julia and returns the result to R. The returning julia object will be automatically converted to an R object or a JuliaObject wrapper, see the documentation of the argument 'need_return' for more details. 'julia_eval' will not invoke julia display system. If you don't need the returning result in R or you want to invoke the julia display system, you can use julia_command.

Usage

julia_eval(cmd, need_return = c("R", "Julia"))

Arguments

cmd

the command string you want to evaluate in julia.

need_return

whether you want julia to return value as an R object or a wrapper for julia object.

Value

the R object automatically converted from julia object.

Examples

if (identical(Sys.getenv("AUTO_JULIA_INSTALL"), "true")) { ## julia_setup is quite time consuming
  ## doing initialization and automatic installation of Julia if necessary
  julia_setup(installJulia = TRUE)
  julia_eval("sqrt(2)")
}

Check whether a julia object with the given name exists or not.

Description

julia_exists returns whether a julia object with the given name exists or not.

Usage

julia_exists(name)

Arguments

name

the name of julia object you want to check.

Examples

if (identical(Sys.getenv("AUTO_JULIA_INSTALL"), "true")) { ## julia_setup is quite time consuming
  ## doing initialization and automatic installation of Julia if necessary
  julia_setup(installJulia = TRUE)
  julia_exists("sqrt")
}

Get help for a julia function.

Description

julia_help outputs the documentation of a julia function.

Usage

julia_help(fname)

Arguments

fname

the name of julia function you want to get help with.

Examples

if (identical(Sys.getenv("AUTO_JULIA_INSTALL"), "true")) { ## julia_setup is quite time consuming
  ## doing initialization and automatic installation of Julia if necessary
  julia_setup(installJulia = TRUE)
  julia_help("sqrt")
}

Do setup for JuliaCall in RMarkdown documents and notebooks.

Description

julia_markdown_setup does the initial setup for JuliaCall in RMarkdown document and RStudio notebooks. The function should be invoked automatically most of the case. It can also be called explicitly in RMarkdown documents or notebooks.

Usage

julia_markdown_setup(..., notebook = TRUE)

Arguments

...

The same arguments accepted by 'julia_setup'.

notebook

whether it is in RStudio notebook environment or not.


(Deprecated) Do setup for julia chunks in RMarkdown notebooks.

Description

julia_notebook_setup is deprecated, use julia_markdown_setup(notebook=TRUE) instead.

Usage

julia_notebook_setup(...)

Arguments

...

The same arguments accepted by 'julia_setup'.


Using julia packages.

Description

Using julia packages.

Usage

julia_install_package(pkg_name_or_url)

julia_installed_package(pkg_name)

julia_install_package_if_needed(pkg_name)

julia_update_package(...)

julia_library(pkg_name)

Arguments

pkg_name_or_url

the julia package name or url.

pkg_name

the julia package name.

...

you can provide none or one or multiple julia package names here.

Value

julia_installed_package will return the version number of the julia package, "nothing" if the package is not installed.

Examples

if (identical(Sys.getenv("AUTO_JULIA_INSTALL"), "true")) { ## julia_setup is quite time consuming
  ## doing initialization and automatic installation of Julia if necessary
  julia_setup(installJulia = TRUE)
  julia_install_package("DataFrames")
  julia_installed_package("DataFrames")
  julia_install_package_if_needed("DataFrames")
  julia_update_package("DataFrames")
  julia_library("DataFrames")
}

Wrap julia functions and packages the easy way.

Description

Wrap julia functions and packages the easy way.

Usage

julia_function(func_name, pkg_name = "Main", env = new.env(emptyenv()))

julia_pkg_import(pkg_name, func_list, env = new.env(parent = emptyenv()))

julia_pkg_hook(env, hook)

Arguments

func_name

the julia function name to be wrapped.

pkg_name

the julia package name to be wrapped.

env

the environment where the functions and packages are wrapped.

func_list

the list of julia function names to be wrapped.

hook

the function to be executed before the execution of wrapped functions.

Examples

if (identical(Sys.getenv("AUTO_JULIA_INSTALL"), "true")) { ## julia_setup is quite time consuming
  ## do initialization and automatic installation of Julia if necessary
  julia_setup(installJulia = TRUE)
  julia_install_package_if_needed("Optim")
  opt <- julia_pkg_import("Optim",
                           func_list = c("optimize", "BFGS"))
rosenbrock <- function(x) (1.0 - x[1])^2 + 100.0 * (x[2] - x[1]^2)^2
result <- opt$optimize(rosenbrock, rep(0,2), opt$BFGS())
result
}

Do initial setup for the JuliaCall package.

Description

julia_setup does the initial setup for the JuliaCall package. It setups automatic type conversion, Julia display systems, etc, and is necessary for every new R session to use the package. If not carried out manually, it will be invoked automatically before other julia_xxx functions.

Usage

julia_setup(
  JULIA_HOME = NULL,
  verbose = TRUE,
  installJulia = FALSE,
  install = TRUE,
  force = FALSE,
  useRCall = TRUE,
  rebuild = FALSE,
  sysimage_path = NULL,
  version = "latest"
)

Arguments

JULIA_HOME

the file folder which contains julia binary, if not set, JuliaCall will look at the global option JULIA_HOME, if the global option is not set, JuliaCall will then look at the environmental variable JULIA_HOME, if still not found, JuliaCall will try to use the julia in path.

verbose

whether to print out detailed information about julia_setup.

installJulia

whether to install julia automatically when julia is not found, whose default value is FALSE.

install

whether to execute installation script for dependent julia packages, whose default value is TRUE; but can be set to FALSE to save startup time when no installation of dependent julia packages is needed.

force

whether to force julia_setup to execute again.

useRCall

whether or not you want to use RCall.jl in julia, which is an amazing package to access R in julia.

rebuild

whether to rebuild RCall.jl, whose default value is FALSE to save startup time. If a new version of R is used, then this parameter needs to be set to TRUE.

sysimage_path

path to the precompiled custom sys image. Path can be either an absolute path or relative to the current directory.

version

the version of Julia to install. Defaults to "latest", which is the latest released version of Julia. You can use "1.10" for example for Julia v1.10.

Value

The julia interface, which is an environment with the necessary methods like command, source and things like that to communicate with julia.

Examples

if (identical(Sys.getenv("AUTO_JULIA_INSTALL"), "true")) { ## julia_setup is quite time consuming
  julia <- julia_setup(installJulia = TRUE)
}

Source a julia source file.

Description

julia_source sources a julia source file.

Usage

julia_source(file_name)

Arguments

file_name

the name of julia source file.


JuliaCall: Seamless Integration Between R and Julia.

Description

JuliaCall provides you with functions to call Julia functions and to use Julia packages as easy as possible.

Examples

if (identical(Sys.getenv("AUTO_JULIA_INSTALL"), "true")) { ## The examples are quite time consuming

  ## Do initiation for JuliaCall and automatic installation if necessary

  julia <- julia_setup(installJulia = TRUE)

  ## Different ways for calculating `sqrt(2)`

  # julia$command("a = sqrt(2)"); julia$eval("a")
  julia_command("a = sqrt(2)"); julia_eval("a")

  # julia$eval("sqrt(2)")
  julia_eval("sqrt(2)")

  # julia$call("sqrt", 2)
  julia_call("sqrt", 2)

  # julia$eval("sqrt")(2)
  julia_eval("sqrt")(2)

  ## You can use `julia_exists` as `exists` in R to test
  ## whether a function or name exists in Julia or not

  # julia$exists("sqrt")
  julia_exists("sqrt")

  ## You can use `julia$help` to get help for Julia functions

  # julia$help("sqrt")
  julia_help("sqrt")

  ## You can install and use Julia packages through JuliaCall

  # julia$install_package("Optim")
  julia_install_package("Optim")

  # julia$install_package_if_needed("Optim")
  julia_install_package_if_needed("Optim")

  # julia$installed_package("Optim")
  julia_installed_package("Optim")

  # julia$library("Optim")
  julia_library("Optim")
}

Convert an R Object to Julia Object.

Description

JuliaObject converts an R object to julia object and returns a reference of the corresponding julia object.

Usage

JuliaObject(x)

Arguments

x

the R object you want to convert to julia object.

Value

an environment of class JuliaObject, which contains an id corresponding to the actual julia object.

Examples

if (identical(Sys.getenv("AUTO_JULIA_INSTALL"), "true")) { ## julia_setup is quite time consuming
  ## doing initialization and automatic installation of Julia if necessary
  julia_setup(installJulia = TRUE)
  a <- JuliaObject(1)
}

JuliaObject Fields.

Description

Get the field names, get or set certain fields of an JuliaObject.

Usage

fields(object)

## S3 method for class 'JuliaObject'
fields(object)

field(object, name)

## S3 method for class 'JuliaObject'
field(object, name)

field(object, name) <- value

## S3 replacement method for class 'JuliaObject'
field(object, name) <- value

Arguments

object

the JuliaObject.

name

a character string specifying the fields to be accessed or set.

value

the new value of the field of the JuliaObject.


Julia plots viewer in R.

Description

plotsViewer lets you view julia plots in R.

Usage

plotsViewer()