
Package: ast2ast (via r-universe)
July 24, 2024

Type Package

Title Translates an R Function to a C++ Function

Version 0.4

Date 2024-06-06

Author Krämer Konrad [aut, cre]

Maintainer Krämer Konrad <konrad_kraemer@yahoo.de>

BugReports https://github.com/Konrad1991/ast2ast

URL https://github.com/Konrad1991/ast2ast

Description Enable translation of a tiny subset of R to C++. The user
has to define a R function which gets translated. For a full
list of possible functions check the documentation. After
translation an R function is returned which is a shallow
wrapper around the C++ code. Alternatively an external pointer
to the C++ function is returned to the user. The intention of
the package is to generate fast functions which can be used as
ode-system or during optimization.

License GPL-2

Imports Rcpp (>= 1.0.4), R6, methods, pryr, rlang, RcppArmadillo,
purrr

LinkingTo Rcpp, RcppArmadillo

VignetteBuilder knitr

Suggests knitr, kableExtra, rmarkdown, tinytest, microbenchmark,
ggplot2, RcppXPtrUtils

Encoding UTF-8

RoxygenNote 7.2.1

Repository https://fastverse.r-universe.dev

RemoteUrl https://github.com/Konrad1991/ast2ast

RemoteRef HEAD

RemoteSha 1fd466ed1d62f89423fb137c7e46251190e8fdfe

1

https://github.com/Konrad1991/ast2ast
https://github.com/Konrad1991/ast2ast

2 translate

Contents
translate . 2

Index 9

translate Translates an R function into a C++ function.

Description

An R function is translated to C++ source code and afterwards the code is compiled.
The result can be an external pointer (XPtr) or an R function.
The default value is an R function.
Further information can be found in the vignette: Detailed Documentation.

Usage

translate(
f,
output = "R",
types_of_args = "double",
data_structures = "vector",
handle_inputs = "copy",
references = FALSE,
verbose = FALSE,
getsource = FALSE

)

Arguments

f The function which should be translated from R to C++.

output If set to ’R’ an R function wrapping the C++ code is returned.
If output is set to ’XPtr’ an external pointer object pointing to the C++ code is
returned.
The default value is ’R’.

types_of_args define the types of the arguments passed to the function as an character vector.
The character vector should be either of length 1 or has the same length as the
number of arguments to the function.
In case the output is set to ’R’ ’logical’, ’int’ or ’double’ are available.
If the ’XPtr’ interface is used additionally ’const logical’, ’const int’ and ’const
double’ can be chosen.
For more information see below for details and check the vignette Information-
ForPackageAuthors.

translate 3

data_structures

defines the data structures of the arguments passed to the function (as an char-
acter vector).
The character vector should be either of length 1 or has the same length as the
number of arguments to the function.
In case the output is set to ’R’ one can chose between ’scalar’ and ’vector’.
If the output is set to ’XPtr’ one can set a data structure to ’scalar’, ’vector’ or
’borrow.

handle_inputs defines how the arguments to the function should be handled as character vector.
The character vector should be either of length 1 or has the same length as the
number of arguments to the function.
In case the output is an R function the arguments can be either copied (’copy’)
or borrowed (’borrow’).
If you chose borrow R objects which are passed to the function are modi-
fied.
This is in contrast to the usual behaviour of R.
If the output is an XPtr the arguments can be only borrowed (’borrow’).
In case only part of the arguments should be borrowed than an empty string ("")
can be used to indicate this.

references defines whether the arguments are passed by reference or whether they are
copied. This is indicated by a logical vector.
The logical vector should be either of length 1 or has the same length as the
number of arguments to the function.
If set to TRUE the arguments are passed by reference otherwise not. This option
can be only used when the output is set to ’XPtr’

verbose If set to TRUE the output of the compilation process is printed.

getsource If set to TRUE the function is not compiled and instead the C++ source code
itself is returned.

Details

Type system: Each variable has a fixed type in a C++ program.
In ast2ast the default type for each variable is a data structure called ’vector’.
Each object in ’vector’ is as default of type ’double’. Notably, it is defined at runtime
whether a variable is a ’vector’ in the sense of on R vector or it is a matrix.

Types of arguments to function: The types of the arguments to the function are set together of:

1. types_of_args; c("int", "int")
2. data_structures; c("vector", "scalar")
3. handle_inputs; c("borrow", "")
4. references; c(TRUE, TRUE)

In this example this results in:
f(etr::Vec<int>& argumentNr1Input, int& argumentNr2) {
etr::Vec<int, etr::Borrow<int>> argumentNr1(argumentNr1Input.d.p,

4 translate

argumentNr1Input.size());
... rest of function code

}

Types within the function: As mentioned above the default type is a ’vector’ containing ’dou-
bles’
Additionally, it is possible to set specific types for a variable.
However, the type cannot be changed if once defined. It is possible to define the following types:

1. logical
2. int
3. double
4. logical_vector
5. int_vector
6. double_vector

The first three mentioned types are scalar types.
These types cannot be resized. Meaning that the behave like a vector of length 1,
which cannot be extended to have more elements. Notably, the scalar values cannot be subsetted.
The advantage is that scalar values need less memory.

declare variable with type: The variables are declared with the type by using the
’::’ operator. Here are some examples:

f <- function() {
d::double <- 3.14
l::logical <- TRUE
dv::int_vector <- vector(mode = "integer", length = 2)

}

Borrowing: As mentioned above it is possible to borrow arguments to a function.
Thus, R objects can be modified within the function.
Please be aware that it is not possible to resize the borrowed variable,
Therefore, the code below throws an error. Here an example:

f <- function(a, b, c) {
a[c(1, 2, 3)] <- 1
b <- vector(length = 10)
c <- vector(length = 1)

}
fcpp <- ast2ast::translate(f, handle_inputs = "borrow")
a <- b <- c <- c(1, 2, 3)
fcpp(a, b,c)

Derivatives: One can use the function set_deriv and get_deriv in order to
calculate the derivative with respect to the variable which is currently set.
The derivatives can be extracted by using the function ’get_deriv’.

set_deriv(x)
y = x*x

translate 5

dydx = get_deriv(y)

The following functions are supported::
1. assignment: = and <-
2. allocation: vector, matrix and rep
3. information about objects: length and dim
4. Basic operations: +, -, *, /
5. Indices: ’[]’ and at
6. mathematical functions: sin, asin, sinh, cos, acos, cosh, tan, atan, tanh, sqrt, log, ^ and exp
7. concatenate objects: c
8. control flow: for, if, else if, else
9. comparison: ==, !=, >, <, >= and <=

10. printing: print
11. returning objects: return
12. catmull-rome spline: cmr
13. to get a range of numbers the ’:’ function can be used
14. is.na and is.infinite can be used to test for NA and Inf.

Some details about the implemented functions:
• For indices squared brackets ’[]’ can be used as common in R. Beyond that the function ’at’

exists which accepts as first argument a variable and as the second argument you pass the
desired index. The caveat of using ’at’ is that only one entry can be accessed. The function
’[]’ can return more then one element.
The at-function returns a reference to the vector entry. Therefore variable[index] can
behave differently then at(variable, index). If only integers are found within ’[]’ the
function at is used at the right side of an assignment operator (=). The at-function can
also be used on the left side of an assignment operator. However, in this case only at
should be used at the right side. Otherwise the results are wrong.
Here is a small example presented how to use the subset functions:

f <- function() {
a <- c(1, 2, 3)
print(at(a, 1))
print(a[1:2])

}
fcpp <- ast2ast::translate(f)
fcpp()

• For- and while-loops can be written as common in R
– Nr.1

for(index in variable){
do whatever
}

– Nr.2
for(index in 1:length(variable){
do whatever

6 translate

}

• The print function accepts either a scalar, vector, matrix, string, bool or nothing (empty
line).

• In order to return an object use the return function (The last object is not returned auto-
matically as in R).

• In order to interpolate values the cmr function can be used. The function needs three argu-
ments.

1. the first argument is the point of the independent variable (x) for which the dependent
variable should be calculated (y). This has to be a vector of length one.

2. the second argument is a vector defining the points of the independent variable (x). This
has to be a vector of at least length four.

3. the third argument is a vector defining the points of the dependent variable (y). This has
to be a vector of at least length four.

Be aware that the R code is translated to ETR an expression template library which
tries to mimic R.
However, it does not behave exactly like R! Please check your compiled function before
using it in a serious project.
If you want to see how ast2ast differs from R in detail check the vignette: Detailed
Documentation.
In case you want to know how ast2ast works in detail check the vignette: Information-
ForPackageAuthors.

Value

If output is set to R an R function is returned. Thus, the C++ code can directly be called within R.
In contrast a function which returns an external pointer is generated if the output is set to XPtr.

Examples

Further examples can be found in the vignettes.
Not run:

f <- function() {
print("Hello World!")

}
fcpp <- ast2ast::translate(f)
fcpp()

Translating to external pointer
--
f <- function() {

print("Hello World!")
}
pointer_to_f_cpp <- ast2ast::translate(f,

output = "XPtr", verbose = TRUE
)

translate 7

Rcpp::sourceCpp(code = "
#include <Rcpp.h>
typedef void (*fp)();

// [[Rcpp::export]]
void call_fct(Rcpp::XPtr<fp> inp) {

fp f = *inp;
f(); } ")

call_fct(pointer_to_f_cpp)

Run sum example:
==

R version of run sum
--
run_sum <- function(x, n) {

sz <- length(x)

ov <- vector(mode = "numeric", length = sz)

ov[n] <- sum(x[1:n])
for (i in (n + 1):sz) {

ov[i] <- ov[i - 1] + x[i] - x[i - n]
}

ov[1:(n - 1)] <- NA

return(ov)
}

translated Version of R function
--
run_sum_fast <- function(x, n) {

sz <- length(x)
ov <- vector(mode = "numeric", length = sz)

sum_db <- 0
for (i in 1:n) {

sum_db <- sum_db + at(x, i)
}
ov[n] <- sum_db

for (i in (n + 1):sz) {
ov[i] <- at(ov, i - 1) + at(x, i) - at(x, i - at(n, 1))

}

ov[1:(n - 1)] <- NA

return(ov)
}
run_sum_cpp <- ast2ast::translate(run_sum_fast, verbose = FALSE)
set.seed(42)

8 translate

x <- rnorm(10000)
n <- 500
one <- run_sum(x, n)
two <- run_sum_cpp(x, n)

End(Not run)

Index

translate, 2

9

	translate
	Index

