
Package: r2c (via r-universe)
July 23, 2024

Title Fast Iterated Statistic Computation in R

Description Compiles a subset of R into machine code so that
expressions composed with that subset can be applied repeatedly
on varying data without interpreter overhead.

Version 0.3.0

License GPL-2 | GPL-3

URL https://github.com/brodieG/r2c

BugReports https://github.com/brodieG/r2c/issues

Suggests unitizer, stats

Imports utils, vetr (>= 0.2.14.9000)

RoxygenNote 7.2.3

Roxygen list(markdown = TRUE)

Encoding UTF-8

Collate 'util.R' 'preproc-copy.R' 'rename.R' 'optim.R' 'code-rep.R'
'code-concat.R' 'constants.R' 'code-unary.R' 'code-bin.R'
'code-mean.R' 'code-summary.R' 'code-numeric.R' 'code-subset.R'
'code-logical.R' 'code-pow.R' 'code-seq.R' 'code-loop.R'
'r2c-package.R' 'code-ifelse.R' 'code-assign-braces.R' 'code.R'
'preprocess.R' 'alloc.R' 'compile.R' 'group.R' 'load.R' 'run.R'
'size.R' 'window.R'

Repository https://fastverse.r-universe.dev

RemoteUrl https://github.com/brodieG/r2c

RemoteRef HEAD

RemoteSha aaa39300a572dee6d912604c2e5f0633c1bac7ad

Contents
r2c-package . 2
bsac . 3
first_vec . 4

1

https://github.com/brodieG/r2c
https://github.com/brodieG/r2c/issues

2 r2c-package

group_exec . 4
lcurry . 6
loaded_r2c_dynlibs . 7
mean1 . 8
numeric_along . 9
process_groups . 10
r2c-compile . 11
r2c-inspect . 15
reuse_calls . 16
rollby_exec . 18
rolli_exec . 23
square . 26

Index 27

r2c-package Fast Iterated Statistic Computation in R

Description

Compiles a subset of R into machine code so that expressions composed with that subset can be
applied repeatedly on varying data without interpreter overhead.

Details

Quick Start:

• Look at the group statistic examples.

Basics:

• Supported functions: which R functions r2c can compile.

• Compilation facilities: how to compile R with r2c.

• Runners: how to execute your code iteratively by group or across windows.

Advanced:

• Performance: what makes r2c fast and what tasks it is best suited for.

• Memory: how r2c minimizes peak memory usage and fragmentation.

• Preprocessing: why r2c modifies R calls before translating them into C.

• Inspect: how to extract components of the "r2c_fun" objects.

• Control structures: why these are considered experimental, and how and why their semantics
diverge from their base R counterparts.

• Expression types: why r2c distinguishes between iteration constant and varying calls, why
some supported function parameters require constant calls, and why calls to unsupported func-
tions are allowed in some circumstances.

bsac 3

bsac Basic Split Apply Combine

Description

Evaluates quoted expressions in the context of data split by group. Intended purely for testing
against r2c calculations.

Usage

bsac(call, data, groups, MoreArgs = list(), enclos = parent.frame())

Arguments

call quoted R call to apply to each group.

data a numeric vector, or a list of equal length numeric vectors. If a named list, the
vectors will be matched to fun parameters by those names. Elements without
names are matched positionally. If a list must contain at least one vector. Con-
ceptually, this parameter is used similarly to envir parameter to base::eval
when that is a list.

groups an integer, numeric, or factor vector. Alternatively, a list of equal-length such
vectors, the interaction of which defines individual groups to organize the vec-
tors in data into (multiple vectors not implemented yet). Numeric vectors
are coerced to integer, thus copied. Vectors of integer type, but with differ-
ent classes/attributes (other than factors) will be treated as integer vectors. The
vectors must be the same length as those in data. NA values are considered one
group. If a list, the result of the calculation will be returned as a "data.frame",
otherwise as a named vector. Currently only one group vector is allowed, even
when using list mode. Support for multiple group vectors and other types of
vectors will be added in the future. Zero length groups are not computed on at
all (e.g. missing factor levels, zero-length group vector).

MoreArgs a list of R objects to pass on as iteration-constant arguments to fun. Unlike with
data, each of the objects therein are passed in full to the native code for each
iteration This is useful for arguments that are intended to remain constant across
iterations. Matching of these objects to fun parameters is the same as for data,
with positional matching occurring after the elements in data are matched.

enclos environment to use as the enclosure to the data in the evaluation call (see eval).

Value

numeric vector

4 group_exec

first_vec Retrieve First Vector from Data

Description

Designed to handle the case where data can be either a numeric vector or a list of numeric vectors.

Usage

first_vec(x)

Arguments

x a numeric vector, or a (possibly empty) list of numeric vectors.

Value

if data is a list, the first element if it is a numeric vector, or an empty numeric vector if the list is
empty. If data is a numeric vector, then data. Otherwise an error is thrown.

Examples

first_vec(1:5)
first_vec(runif(5))
first_vec(mtcars)
first_vec(matrix(1:4, 2)) # matrices treated as vectors

group_exec Execute r2c Function Iteratively on Groups in Data

Description

A runner that organizes data into groups as defined by groups, and executes the native code asso-
ciated with fun iteratively with each group’s portion of data.

Usage

group_exec(fun, data, groups, MoreArgs = list())

group_exec 5

Arguments

fun an "r2c_fun" function as produced by the compilation functions.

data a numeric vector, or a list of equal length numeric vectors. If a named list, the
vectors will be matched to fun parameters by those names. Elements without
names are matched positionally. If a list must contain at least one vector. Con-
ceptually, this parameter is used similarly to envir parameter to base::eval
when that is a list.

groups an integer, numeric, or factor vector. Alternatively, a list of equal-length such
vectors, the interaction of which defines individual groups to organize the vec-
tors in data into (multiple vectors not implemented yet). Numeric vectors
are coerced to integer, thus copied. Vectors of integer type, but with differ-
ent classes/attributes (other than factors) will be treated as integer vectors. The
vectors must be the same length as those in data. NA values are considered one
group. If a list, the result of the calculation will be returned as a "data.frame",
otherwise as a named vector. Currently only one group vector is allowed, even
when using list mode. Support for multiple group vectors and other types of
vectors will be added in the future. Zero length groups are not computed on at
all (e.g. missing factor levels, zero-length group vector).

MoreArgs a list of R objects to pass on as iteration-constant arguments to fun. Unlike with
data, each of the objects therein are passed in full to the native code for each
iteration This is useful for arguments that are intended to remain constant across
iterations. Matching of these objects to fun parameters is the same as for data,
with positional matching occurring after the elements in data are matched.

Value

If groups is an atomic vector, a named numeric or integer vector with the results of executing fun
on each group and the names set to the groups. Otherwise, a "data.frame" with the group vectors as
columns and the result of the computation as the last column. It is likely the mechanism to induce
vector or data frame outputs will change in the future.

See Also

Compilation for more details on the behavior and constraints of "r2c_fun" functions, package
overview for other r2c concepts.

Other runners: rollby_exec(), rolli_exec()

Examples

r2c_mean <- r2cq(mean(x))
with(mtcars, group_exec(r2c_mean, hp, groups=cyl))

r2c_slope <- r2cq(
sum((x - mean(x)) * (y - mean(y))) / sum((x - mean(x)) ^ 2)

)
with(mtcars, group_exec(r2c_slope, list(hp, qsec), groups=cyl))

Parameters are generated in the order they are encountered

6 lcurry

str(formals(r2c_slope))

Data frame output, re-order arguments
with(

mtcars,
group_exec(r2c_slope, list(y=hp, x=qsec), groups=list(cyl))

)

We can provide iteration-constant parameters (na.rm here):
r2c_sum_add_na <- r2cq(sum(x * y, na.rm=na.rm) / sum(y))
str(formals(r2c_sum_add_na))
a <- runif(10)
a[8] <- NA
weights <- c(.1, .1, .2, .2, .4)
g <- rep(1:2, each=5)
group_exec(

r2c_sum_add_na, a, groups=g,
MoreArgs=list(y=weights, na.rm=TRUE) ## MoreArgs for iter-constant

)
group_exec(

r2c_sum_add_na, a, groups=g,
MoreArgs=list(y=-weights, na.rm=FALSE)

)

Groups known to be sorted can save substantial time
n <- 1e7
x <- runif(1e7)
g <- cumsum(sample(c(TRUE, rep(FALSE, 99)), n, replace=TRUE))
identical(g, sort(g)) # sorted already!
system.time(res1 <- group_exec(r2c_mean, x, g))
system.time(res2 <- group_exec(r2c_mean, x, process_groups(g, sorted=TRUE)))
identical(res1, res2)

We can also group by runs by lying about `sorted` status
x <- 1:8
g <- rep(rep(1:2, each=2), 2)
g
group_exec(r2c_mean, x, groups=list(g))
group_exec(r2c_mean, x, groups=process_groups(list(g), sorted=TRUE))

lcurry Pre-Set Function Parameters

Description

Create a new function from an existing function, but with parameters pre-set. This is a function
intended for testing to simplify complex expressions involving the _exec functions. It merely stores
the function expression to execute in the lexical environment it was created in. All symbols will be
resolved at evaluation time, not at creation time.

loaded_r2c_dynlibs 7

Usage

lcurry(FUN, ...)

Arguments

FUN the function to pre-set parameters for

... parameters to pre-set

Details

This is inspired by a function originally from Byron Ellis, adapted by Jamie F Olson, and dis-
covered by me via Peter Danenberg’s {functional} (see packages ?functional::Curry and
functional::CurryL). The implementation here is different, in particular it makes it easy to see
what the intended call is by displaying the function contents (see examples).

Value

FUN wrapped with pre-set parameters

Examples

sum_nona <- lcurry(sum, na.rm=TRUE)
sum_nona(c(1, NA, 2))
sum_nona

loaded_r2c_dynlibs Manage r2c Dynamic Libraries

Description

List or unload r2c loaded dynamic libraries. These functions are helpful for managing situations
where there is a sufficiently large number of r2c functions created (hundreds) that there is a risk of
exhausting the number of allowed open dynamic libraries (see note for base::dyn.load).

Usage

loaded_r2c_dynlibs()

unload_r2c_dynlibs(except = character())

Arguments

except character vector of dynamic library names as produced by loaded_r2c_dynlibs
to exclude from unloading.

8 mean1

Details

"r2c_fun" functions are designed to unload their associated dynamic libraries when they are garbage
collected, but in our experience garbage collection on them is difficult to predict or force. The
intended use of these function is to record loaded r2c dynamic libraries that we wish to preserve
prior to creating a set that we wish to use and discard. Once we are done with the discardable set,
we drop all r2c dynamic libraries that were not part of the previously recorded list (see examples).

r2c dynamic libraries are recognized solely by matching their names against the regular expression
pattern "^r2c-[a-z0-9]{10}$". All such libraries missing from the except parameter will be
unloaded by unload_r2c_dynlibs, even if they were not created by r2c. Any r2c function that
has its associated dynamic library unloaded will cease to work, so it only makes sense to unload
libraries for functions known to be deleted.

See Also

r2c-compile for details on "r2c_fun" functions, get_so_loc to retrieve original dynamic library file
system location from and "r2c_fun" object, base::dyn.unload, base::getLoadedDLLs.

Examples

except <- loaded_r2c_dynlibs()
tmp.r2c.fun <- r2cq(sum(x))
tmp.r2c.fun(1:10)
rm(tmp.r2c.fun)
gc() # gc should unload lib, but it often doesn't
unload_r2c_dynlibs(except) # force unload

mean1 Single Pass Mean Calculation

Description

base::mean does a two pass calculation that additional handles cases where sum(x) overflows
doubles but sum(x/n) does not. This version is a single pass one that does not protect against the
overflow case.

Usage

mean1(x, na.rm = FALSE)

Arguments

x An R object. Currently there are methods for numeric/logical vectors and date,
date-time and time interval objects. Complex vectors are allowed for trim = 0,
only.

na.rm a logical evaluating to TRUE or FALSE indicating whether NA values should be
stripped before the computation proceeds.

numeric_along 9

Value

scalar numeric

Examples

mean1(runif(10))

Overflow even 80 bit long double:
mean1(rep(.Machine$double.xmax, 2^4))
mean(rep(.Machine$double.xmax, 2^4))

Reduced precision
x <- runif(10) ^ 2
mean(x) - mean1(x)

numeric_along Initialize a Numeric Vector Sized to Match Input

Description

Generates a numeric vector of the same size as the input. Equivalent to numeric(length(x)).
numeric_alongn supports multiple vectors in the input, for which the result size is the product of
the lengths of the inputs.

Usage

numeric_along(along.with)

numeric_alongn(...)

Arguments

along.with vector to use for sizing the result.

... vectors to use for sizing the result.

Value

a zero numeric vector the same length as the product of the lengths of all the vectors in provided as
inputs.

See Also

base::numeric

Examples

numeric_along(1:3)
numeric_alongn(1:3, 1:2)

10 process_groups

process_groups Compute Group Meta Data

Description

group_exec sorts data by groups prior to iterating through them. When running group_exec mul-
tiple times on the same data, it is better to pre-sort the data and tell group_exec as much so it does
not sort the data again. We can do the latter with process_groups, which additionally computes
group information we can re-use across calls.

Usage

process_groups(groups, sorted = FALSE)

Arguments

groups an integer, numeric, or factor vector. Alternatively, a list of equal-length such
vectors, the interaction of which defines individual groups to organize the vec-
tors in data into (multiple vectors not implemented yet). Numeric vectors
are coerced to integer, thus copied. Vectors of integer type, but with differ-
ent classes/attributes (other than factors) will be treated as integer vectors. The
vectors must be the same length as those in data. NA values are considered one
group. If a list, the result of the calculation will be returned as a "data.frame",
otherwise as a named vector. Currently only one group vector is allowed, even
when using list mode. Support for multiple group vectors and other types of
vectors will be added in the future. Zero length groups are not computed on at
all (e.g. missing factor levels, zero-length group vector).

sorted TRUE or FALSE (default), whether the vectors in groups are already sorted.
If set to TRUE, no sorting will be done on the groups, nor later on the data
by group_exec. If the data is truly sorted this produces the same results while
avoiding the cost of sorting. If the data is not sorted by groups, g will produce
groups corresponding to equal-value runs it contains, which might be useful in
some circumstances.

Value

an "r2c.groups" object, which is a list containing group sizes, labels, and group count, along with
other meta data such as the group ordering vector.

Note

The structure and content of the return value may change in the future.

See Also

group_exec

r2c-compile 11

Examples

Use same group data for different but same length data.
(alternatively, could use two functions on same data).
n <- 10
dat <- data.frame(x=runif(n), y=runif(n), g=sample(1:3, n, replace=TRUE))

Pre-sort by group and compute grouping data
dat <- dat[order(dat[['g']]),]
g.r2c <- process_groups(dat[['g']], sorted=TRUE) # note sorted=TRUE

Re-use pre-computed group data
f <- r2cq(sum(x))
with(dat, group_exec(f, x, groups=g.r2c))
with(dat, group_exec(f, y, groups=g.r2c))

Claim unsorted data is sorted to implement RLE
g <- c(1, 2, 2, 1, 1, 1, 2, 2)
group_exec(f, rep(1, length(g)), process_groups(g, sorted=TRUE))
rle(g)$values
rle(g)$lengths

r2c-compile Compile Eligible R Calls Into Native Instructions

Description

The r2c* compilation functions translate supported R function calls into C, compile them into na-
tive instructions using R CMD SHLIB, and return an interface to that code in the form of an "r2c_fun"
function. This function will carry out out numerical calculations with r2c native instructions in-
stead of with the standard R routines, with the exception of some iteration-constant calls. "r2c_fun"
functions are intended to be run with the r2c runners for fast iterated calculations. Look at the
examples here and those of the runners to get started.

Usage

r2cf(
x,
dir = NULL,
check = getOption("r2c.check.result", FALSE),
quiet = getOption("r2c.quiet", TRUE),
clean = is.null(dir),
optimize = getOption("r2c.optimize", TRUE),
envir = environment(x)

)

r2cl(
x,
formals = NULL,

12 r2c-compile

dir = NULL,
check = getOption("r2c.check.result", FALSE),
quiet = getOption("r2c.quiet", TRUE),
clean = is.null(dir),
optimize = getOption("r2c.optimize", TRUE),
envir = parent.frame()

)

r2cq(
x,
formals = NULL,
dir = NULL,
check = getOption("r2c.check.result", FALSE),
quiet = getOption("r2c.quiet", TRUE),
clean = is.null(dir),
optimize = getOption("r2c.optimize", TRUE),
envir = parent.frame()

)

Arguments

x an object to compile into an "r2c_fun", for r2cf an R function, for r2cq an
expression that will be captured unevaluated, for r2cl an R expression escaped
with quote. See details.

dir NULL (default), or character(1L) name of a file system directory to store the
shared object file in. If NULL a temporary directory will be used. The shared
object will also be loaded, and if dir is NULL the directory with the file will
be removed after loading. Currently the capability to re-use generated shared
objects across R sessions is not formally supported, but can likely be arranged
for by preserving the directory.

check TRUE or FALSE (default), if TRUE will evaluate the R expression with the input
data and compare that result to the one obtained from the r2c C code evaluation,
marking the result with attributes that indicate that the result was identical, and
if not, also with an attribute with the result of an all.equal comparison. The
check is only carried out when an r2c function is invoked directly (see example).

quiet whether to suppress the compilation output.
clean TRUE or FALSE, whether to remove the dir folder containing the generated C

code and the shared object file after the shared object is dyn.loaded. Normally
this is an auto-generated temporary folder. This will only delete folders that have
the same directory root as one generated by tempfile() to avoid accidents.
If you manually provide dir you will need to manually delete the directory
yourself.

optimize TRUE (default) or FALSE whether to enable "compiler" optimizations. Cur-
rently it is just the automatic re-use of repeated computation results. You can
use get_r_code to see if optimizations were applied.

envir environment to use as the enclosure of the function evaluation environment. It
defaults to the environment from which the compilation function is called, or for
r2cf the environment of fun. See details.

r2c-compile 13

formals character vector of the names of the parameters for the resulting "r2c_fun", a list
of formals as generated with e.g. alist, or NULL (default). NULL causes all
free symbols in x to become parameters to the result "r2c_fun" in the order they
appear in x’s call tree (see details). Non-default values can be used to specify
different parameter order, and in the list form also to specify default values for
parameters. Symbols in x not in formals will be resolved against the evaluation
environment at run time.

TRUE FALSE, or an integer setting optimization levels. Currently applies reuse_calls
if not FALSE or 0.

Value

an "r2c_fun" function; this is an unusual function so please see details.

r2c Generated Functions

While "r2c_fun" functions can be called in the same way as normal R functions, there is limited
value in doing so. "r2c_fun" functions are optimized to be invoked invoked indirectly with runners.
In many common cases it is likely that using an "r2c_fun" directly instead of with a runner will be
slower than evaluating the corresponding R expression.

The lifecycle of an r2c function has two stages.

1. Compilation, with r2cq or similar.

2. Execution, either direct or via runners, which comprises:

• A one time memory allocation sized to largest iteration (this memory is re-used for every
iteration).

• Iterative execution over groups/windows.

Each of the r2c* functions addresses different types of input:

• r2cf generates an "r2c_fun" function from a regular R function.

• r2cq captures an unquoted R expression and turns it into an "r2c_fun" function (e.g. r2cq(a
+ b)).

• r2cl turns quoted R language (e.g. as generated by quote) into an "r2c_fun" function (e.g.
r2cl(quote(a + b))).

For r2cl and r2cq, free symbols used as parameters to call and its constituent sub-calls (e.g. the
x and y in sum(x) + y) will become parameters to the output "r2c_fun" function. There must be
at least one such symbol in call. Parameter order follows that of appearance in the call tree after
everything is match.called. Symbols beginning with .R2C are reserved for use by r2c and thus
disallowed in call. You may also directly set the parameter list with the formals parameter, or
with r2cf.

As with regular R functions, unbound symbols are resolved in the lexical environment of the func-
tion. You can set a different environment on creation of the function with the envir parameter,
but currently there is no way to change it afterwards (environment(r2c_fun) <- x will likely just
break the function).

14 r2c-compile

Details

r2c will preprocess the provided call either to apply optimizations (see optimize parameter), or
because a call needs to be modified to work correctly with r2c. The processing leaves call semantics
unchanged. If r2c modified a call, get_r_code will show a "processed" member with the modified
call.

r2c requires a C99 or later compatible implementation with floating point infinity defined and the
R_xlen_t range representable without precision loss as double precision floating point. Platforms
that support R and fail this requirement are likely rare.

Interrupts are supported at the runner level, e.g. between groups or windows, each time a preset
number of elements has been processed since the last interrupt check. There is infrastructure to
support within iteration-interrupts, but it adds overhead when dealing with many iterations with few
elements each and thus is disabled at the moment.

Users should not rely on specifics of the internal structure of "r2c_fun" functions; these are subject
to change without notice in future r2c releases. The only supported uses of "r2c_fun" functions are
use with the runners, standard invocation with the (operator, and other r2c functions that accept
"r2c_fun" functions as arguments.

See Also

runners to iterate "r2c_fun" functions on varying data, inspection functions to retrieve meta data
from the function including the generated C code and the compiler output, preprocessing for how
r2c modifies R calls before translation to C, package overview for other r2c concepts.

Examples

r2c_mean_area <- r2cq(mean(x * y))
Not run:
Equivalently with `r2cl` or `r2cf`:
r2c_mean_area <- r2cl(quote(mean(x * y)))
mean_area <- function(x, y) mean(x * y)
r2c_mean_area <- r2cf(mean_area)

End(Not run)
Intended use is with runners
with(

iris,
group_exec(r2c_mean_area, list(Sepal.Width, Sepal.Length), Species)

)
Standard invocation supported but, it is of limited value.
We'll use standard invocation in the examples for clarity.
r2c_mean_area(iris[['Sepal.Width']], iris[['Sepal.Length']])

Set parameter order for r2cq
r2c_sum_sub2 <- r2cq(sum(x - y), formals=c('y', 'x'))
r2c_sum_sub2(-1, c(1, 2, 3))

Multi-line statements with assignments are supported (but
`r2c` automatically optimizes re-used calls, so intermediate
assignments may be unnecessary (see `?reuse_calls`):

r2c-inspect 15

slope <- function(x, y) {
mux <- mean(x)
x_mux <- x - mux
sum(x_mux * (y - mean(y))) / sum(x_mux^2)

}
r2c_slope <- r2cf(slope)
u <- runif(10)
v <- 3/4*u + 1/4*runif(10)
r2c_slope(u, v)

r2c-inspect Extract Data from "r2c_fun" Objects

Description

"r2c_fun" functions contain embedded data used by the runners to call the compiled native code
associated with the functions. The functions documented here extract various aspects of this data.

Usage

get_c_code(fun, all = TRUE)

get_r_code(fun, raw = FALSE)

get_so_loc(fun)

get_compile_out(fun)

show_c_code(fun, all = FALSE)

Arguments

fun an "r2c_fun" function as produced by the compilation functions.

all TRUE or FALSE (default) whether to retrieve all of the C code, or just the
portion directly corresponding to the translated R expression.

raw TRUE or FALSE (default) whether to display the processed R code exactly as
r2c will use it, or to simplify it to make easier to read. If a simplification oc-
curred the processed member name will be "processed*".

Details

• get_so_loc the file system location of the shared object file which can be used to identify the
corresponding loaded dynamic library (see details).

• get_c_code the generated C code used to produce the shared object, but for quick inspection
show_c_code is best.

• show_c_code retrieves code with get_c_code and outputs to screen the portion corresponding
to the compiled expression, or optionally all of it.

16 reuse_calls

• get_r_code the R call that was translated into the C code; if processing modified the original
call the processed version will also be shown (see r2cq).

• get_compile_out the "stdout" produced during the compilation of the shared object.

Most calls seen in the raw version of what get_r_code returns will have a C level counterpart
labeled with the R call in a comment. This includes calls that are nested as arguments to other calls,
which will appear before the outer call. Due to how how control structures are implemented the R
calls and the C level counterparts will not match up exactly.

When r2c creates a dynamic library, by default it immediately deletes the file system object after
loading into memory. Thus, get_so_loc is only useful to help identify the loaded version of the
library. See r2c-compile for how to preserve the file system version of loaded libraries.

Value

For get_r_code a list with on or two members, the first "original" is the R language object pro-
vided to the compilation functions, the second "processed" (or "processed*", see raw parameter)
is the version that the C code is based on. For all other functions a character vector, invisibly for
show_c_code.

See Also

r2c-compile, r2c-preprocess, loaded_r2c_dynlibs.

Examples

r2c_sum_sub <- r2cq(sum(x + y))
get_r_code(r2c_sum_sub)
show_c_code(r2c_sum_sub)

reuse_calls Identify Repeated Calls and Reuse First Instance

Description

Complex statistics often re-use a simpler statistic multiple times, providing the opportunity to op-
timize them by storing the result of the simple statistic instead of recomputing it. This function
detects reuses of sub-calls and modifies the call tree to implement the store-and-reuse optimization.

Usage

reuse_calls(x)

Arguments

x a call

reuse_calls 17

Details

While this function is intended primarily for use as a pre-processing optimization for r2c, it can be
applied to R expressions generally with some important caveats. r2c should work correctly with all
r2c compatible R expressions, but is not guaranteed to do so with all R expressions. In particular,
any expressions with side effects are likely to cause problems. Simple assignments like <- or = are
safe in cases where there is no ambiguity about the order in which they would be made (e.g. {a <-
b; b <- a} is safe, but fun(a <- b, b <- a) might not be). r2c allows only the unambiguous cases
for the "r2c_fun" functions, but that is enforced by the compilation functions, not by reuse_calls.
Nested scopes will also trick reuse_calls (e.g. use of local, in-lined functions).

Sub-calls are compared by equality of their deparsed forms after symbols are disambiguated to
account for potential re-assignment. reuse_calls is conservative about branches, assuming that
variables might be set to different values by different branches. This might void substitutions that at
run-time would have turned out to be valid, and even some that could have been known to be valid
with more sophisticated static analysis (e.g. if(TRUE) ... else ... will be treated as a branch
even though it is not really). Substitutions involving loop modified variables are also limited due to
the possibility of their value changing during e.g. the first and nth loop iteration, or the possibility
of the loop not running at all.

reuse_calls relies on functions being bound to their original symbols, so do not expect it to work
correctly if e.g. you rebind <- to some other function. r2c checks this in its own use, but if you use
reuse_calls directly you are responsible for this.

Value

a list with elements:

• x: the call with the re-used expressions substituted

• reuse: named list with names the variables that reference the expressions that are substituted,
and values those expressions.

Examples

x <- runif(100)
y <- runif(100)
slope <- quote(((x - mean(x)) * (y - mean(y))) / (x - mean(x))^2)
(slope.r <- reuse_calls(slope))
identical(eval(slope), eval(slope.r))

intercept <- quote(
mean(y) - mean(x) * ((x - mean(x)) * (y - mean(y))) / (x - mean(x))^2

)
(intercept.r <- reuse_calls(intercept))
identical(eval(intercept), eval(intercept.r))

18 rollby_exec

rollby_exec Compute on Sequential Windows on Data

Description

A runner that calls the native code associated with fun on sequential windows along data vector(s)
with "elements" positioned on the real line. Data element positions can be specified and irregular, so
equal sized windows may contain different number of elements. Window positions may be specified
independent of data element positions. Each roll*_exec function provides a different mechanism
for defining the space covered by each window. All of them will compute fun for each iteration
with the set of data "elements" that fall within that window.

• rollby_exec: equal width windows spaced by apart.

• rollat_exec: equal width windows at specific positions given in at.

• rollbw_exec: windows with ends defined explicitly in left and right.

Additionally, rolli_exec is available for variable integer-width windows spaced by apart, but data
elements are rank-positioned only.

Usage

rollby_exec(
fun,
data,
width,
by,
offset = 0,
position = seq(1, length(first_vec(data)), 1),
start = position[1L],
end = position[length(position)],
bounds = "[)",
MoreArgs = list()

)

rollat_exec(
fun,
data,
width,
at = position,
offset = 0,
position = seq(1, length(first_vec(data)), 1),
bounds = "[)",
MoreArgs = list()

)

rollbw_exec(
fun,

rollby_exec 19

data,
left,
right,
position = seq(1, length(first_vec(data)), 1),
bounds = "[)",
MoreArgs = list()

)

Arguments

fun an "r2c_fun" function as produced by the compilation functions.

data a numeric vector, or a list of equal length numeric vectors. If a named list, the
vectors will be matched to fun parameters by those names. Elements without
names are matched positionally. If a list must contain at least one vector. Con-
ceptually, this parameter is used similarly to envir parameter to base::eval
when that is a list.

width scalar positive numeric giving the width of the window interval. Unlike with
rolli_exec’s n, width must be scalar.

by strictly positive, finite, non-NA scalar numeric, interpreted as the stride to incre-
ment the anchor by after each fun application.

offset finite, non-na, scalar numeric representing the offset of the window from its
"anchor". Defaults to 0, which means the left end of the window is aligned with
the anchor (i.e. conceptually equivalent to align="left" for rolli_exec). Use
-width/2 for center aligned, and -width for right aligned. See "Intervals". Note
this default is different to that for rolli_exec.

position finite, non-NA, monotonically increasing numeric vector with as many elements
as data. Each element in position is the position on the real line of the corre-
sponding data element (see notes). Integer vectors are coerced to numeric and
thus copied.

start non-na, finite scalar numeric position on real line of first "anchor". Windows
may extend to the left of start (or to the right of end) based on offset,
and will include all data elements inside the window, even if they are outside
[start,end].

end non-na, finite scalar numeric position on real line of last "anchor", see start.

bounds scalar character to determine whether elements positions on a window boundary
are included or excluded from the window:

• "[)": include elements on left boundary, exclude those on right (default).
• "(]": include elements on right boundary, exclude those on left.
• "[]": include elements on either boundary.
• "()": exclude elements on either boundary.

[)": include elements on left boundary, exclude those on right (default).

• "(]: R:)%22:%20include%20elements%20on%20left%20boundary,%20exclude%20those%20on%20right%20(default).%0A*%20%22(

MoreArgs a list of R objects to pass on as iteration-constant arguments to fun. Unlike with
data, each of the objects therein are passed in full to the native code for each
iteration This is useful for arguments that are intended to remain constant across

20 rollby_exec

iterations. Matching of these objects to fun parameters is the same as for data,
with positional matching occurring after the elements in data are matched.

at non-NA, finite, monotonically increasing numeric vector of anchor positions on
the real line for each window (see notes). Integer vectors are coerced to numeric
and thus copied.

left non-NA, finite, monotonically increasing numeric positions of the left end of
each window on the real line (see notes). Integer vectors are coerced to numeric
and thus copied.

right non-NA, finite, monotonically increasing numeric positions of the left end of
each window on the real line, where right >= left (see notes). Integer vectors
are coerced to numeric and thus copied.

Value

A numeric vector of length:

• (end - start) %/% by + 1 for rollby_exec.

• length(at) for rollat_exec.

• length(left) for rollbw_exec.

Data Elements

data is made up of "elements", where an "element" is a vector element if data is an atomic vector,
or a "row" if it is a "data.frame" / list of equal-length atomic vectors. Elements of data are arrayed
on the real line by position. The default is for each element to be located at its integer rank, i.e.
the first element is at 1, the second at 2, and so on. Rank position is the sole and implicit option
for rolli_exec, which will be more efficient for that case, slightly so for by = 1, and more so for
larger values of by.

Windows

Windows are intervals on the real line aligned (adjustably) relative to an "anchor" point given by at
for rollat_exec, or derived from start and by for rollby_exec. rollbw_exec defines the ends
of each window explicitly via left and right. Interval bounds are closed on the left and open on
the right by default.

As an illustration for rollby_exec and rollat_exec, consider the case of width = 3 windows at
the fourth iteration, with various offset values. The offset is the distance from the left end of the
window to the anchor. We use the letters a through g to reference the first seven elements of a
numeric vector.

rollby_exec(..., by=1, width=3)
+------------- 4th iteration, anchor is 4.0
V

1.0 2.0 3.0 4.0 5.0 6.0 7.0 | < Real Line
a b c d e f g | < Elements

|
| Offset In-window Elements
[-----------------) | 0 {d, e, f}

rollby_exec 21

[-----------------) | -w/2 {c, d, e}
[-----------------) | -w {a, b, c}

In each case we get three elements in the window, although this is only because the positions of
the elements are on the integers by default. Since the windows are open on the right, elements that
align exactly on the right end of the window are excluded. With irregularly spaced elements, e.g.
with position = c(1, 1.25, 2.5, 5.3, 7, ...), we might see (positions approximate):

rollby_exec(..., by=1, width=3, position=c(1, 1.25, 2.5, 5.3, 7))
+------------- 4th iteration, base index is 4.0
V

1.0 2.0 3.0 4.0 5.0 6.0 7.0 | < Real Line
a b c | d e | < Elements

|
| Offset In-window
[-----------------) | 0 {d}

[-----------------) | -w/2 {c, d}
[-----------------) | -w {a, b, c}

Unlike with rolli_exec there is no partial parameter as there is no expectation of a fixed number
of elements in any given window.

A restriction is that both ends of a window must increase monotonically relative to their counterparts
in the prior window. This restriction might be relaxed for rollbw_exec in the future, likely at the
cost of performance.

Equivalence

The roll*_exec functions can be ordered by increasing generality:

rolli_exec < rollby_exec < rollat_exec < rollbw_exec

Each of the functions can replicate the semantics of any of the less general functions, but with in-
creased generality come efficiency decreases (see "Performance"). One exception is that rolli_exec
supports fully variable width windows. rollbw_exec supports variable width windows, with the
constraint that window bounds must monotonically increase with each iteration.

rolli_exec has semantics similar to the simple use case for zoo::rollapply, data.table::froll*,
RcppRoll::roll*, and slider::slide_<fun>. rollat_exec(..., position=x, at=x) has se-
mantics similar to slider::slide_index, but is more flexible because at need not be position.

Performance

In general {r2c} should perform better than most alternate window functions for "arbitrary" statis-
tics (i.e. those that can be composed from {r2c} supported functions). Some packages implement
algorithms that will outperform {r2c} on wide windows for a small set of simple predefined statis-
tics. For example, for rolling means {data.table} and {roll} offer the "on-line" algorithm, and
{slider} the "segment tree" algorithm, each with different performance and precision trade-offs.

Recall that the less general the roll*_ function is, the better performance it will have (see "Equiva-
lence"). The differences are slight between the by/at/bw implementations, and also for rolli_exec
if by << n. If by >> n, rolli_exec can be much faster.

See README for more details.

https://github.com/brodieG/r2c

22 rollby_exec

Note

For the purposes of this documentation, the first value in a set or the lowest value in a range are
considered to be the "leftmost" values. We think of vectors as starting on the "left" and ending on
the "right", and of the real line as having negative infinity to the "left" of positive infinity.

Position vectors are expected to be monotonically increasing and devoid of NA and non-finite val-
ues. Additionally it is expected that right >= left. It is the user’s responsibility to ensure these
expectations are met. Window bounds are compared to element positions sequentially using by LT,
LTE, GT, GTE relational operators in C, the exact set of which depending on bounds. If any of
the position vectors are out of order, or contain NAs, or non-finite values, some, or all windows
may not contain the elements they should. Further, if there are any NAs the result may depend on
the C implementation used to compile this package. Future versions may check for and disallow
disordered, NA, and/or non-finite values in the position vectors.

See Also

Compilation for more details on the behavior and constraints of "r2c_fun" functions, first_vec to
retrieve first atomic vector, package overview for other r2c concepts.

Other runners: group_exec(), rolli_exec()

Examples

Simulate transactions occurring ~4 days
old.opt <- options(digits=3)
set.seed(1)
count <- 150
frequency <- 1/(3600 * 24 * 4)
time <- as.POSIXct('2022-01-01') - rev(cumsum(rexp(count, frequency)))
revenue <- runif(count) * 100
data.frame(time, revenue)[c(1:3,NA,seq(count-2, count)),]

r2c_mean <- r2cq(mean(x))

Mean trailing quarter revenue, computed/reported "monthly"
month <- 3600 * 24 * 30 # more or less
by30 <- rollby_exec(

r2c_mean, revenue, position=time, width=3 * month, by=month,
start=as.POSIXct('2021-01-01'),
offset=-3 * month # trailing three months

)
by30

Same, but explicit times via `at`; notice these are not exactly monthly
timeby30 <- seq(as.POSIXct('2021-01-01'), to=max(time), by=month)
timeby30[1:10]
at30 <- rollat_exec(

r2c_mean, revenue, position=time, width=3 * month,
at=timeby30, offset=-3 * month

)
at30
identical(by30, at30)

rolli_exec 23

Use exact monthly times with `at`
timebymo <- seq(as.POSIXct('2021-01-01'), to=max(time), by="+1 month")
timebymo[1:10]
atmo <- rollat_exec(

r2c_mean, revenue, position=time, width=3 * month,
at=timebymo, offset=-3 * month

)
(rev.90 <- data.frame(time=timebymo, prev.90=atmo))[1:5,]

Exact intervals with `rollexec_bw`.
months <- seq(as.POSIXct('2020-10-01'), to=max(time), by="+1 month")
left <- head(months, -3)
right <- tail(months, -3)
bwmo <- rollbw_exec(r2c_mean, revenue, position=time, left=left, right=right)
(rev.qtr <- data.frame(time=right, prev.qtr=bwmo))[1:5,]

These are not exactly the same because -90 days is not always 3 months
atmo - bwmo
Confirm bwmo is what we think it is (recall, right bound open)
identical(bwmo[1], mean(revenue[time >= '2020-10-01' & time < '2021-01-01']))

Compare current month to trail quarter
months2 <- seq(

as.POSIXct('2021-01-01'), length.out=nrow(rev.qtr) + 1, by="+1 month"
)
left <- months2[-length(months2)]
right <- months2[-1]
thismo <- rollbw_exec(r2c_mean, revenue, position=time, left=left, right=right)
transform(

rev.qtr,
this.month=thismo,
pct.change=round((thismo - prev.qtr)/prev.qtr * 100, 1)

)
options(old.opt)

rolli_exec Compute on Sequential Regular Windows on Equidistant Data

Description

A runner that calls the native code associated with fun on sequential regularly spaced windows
along the data vector(s). Each window is aligned relative to a specific data "element" (anchor), and
the set of window size n contiguous elements around and including the "anchor" are computed on.
This is a special case of rollby_exec intended to mimic the semantics of zoo::rollapply where
width is a scalar integer, and implicitly the data elements are equally spaced.

Usage

rolli_exec(

24 rolli_exec

fun,
data,
n,
by = 1L,
align = "center",
partial = FALSE,
MoreArgs = list()

)

Arguments

fun an "r2c_fun" function as produced by the compilation functions.

data a numeric vector, or a list of equal length numeric vectors. If a named list, the
vectors will be matched to fun parameters by those names. Elements without
names are matched positionally. If a list must contain at least one vector. Con-
ceptually, this parameter is used similarly to envir parameter to base::eval
when that is a list.

n integer number of adjacent data "elements" to compute fun on. It is called n and
not width to emphasize it is a discrete count instead of an interval width as in
rollby_exec and friends. Must be scalar, or have as many elements as data (see
"Data Elements"). For the latter, specifies the element counts of each window.
Coerced to integer if numeric, and thus copied.

by strictly positive scalar integer interpreted as the stride to increment the "anchor"
after each fun application. Coerced to integer if numeric.

align scalar character one of "center" (default), "left", or "right", indicating what part
of the window should align to the base index. Alternatively, a scalar integer
where 0 is equivalent to "left", 1 - n equivalent to "right", and (1 - n) %/% 2 is
equivalent to "center" (i.e. represents the offset of the window relative to its
anchor).

partial TRUE or FALSE (default), whether to allow computation on partial windows
that extent out of either end of the data.

MoreArgs a list of R objects to pass on as iteration-constant arguments to fun. Unlike with
data, each of the objects therein are passed in full to the native code for each
iteration This is useful for arguments that are intended to remain constant across
iterations. Matching of these objects to fun parameters is the same as for data,
with positional matching occurring after the elements in data are matched.

Value

a numeric vector of length length(first_vec(data)) %/% by.

Window Alignment

align specifies which end of the window aligns with the anchor. Here we illustrate on the fourth
iteration of a call to rolli_exec:

rolli_exec(..., data=1:7, n=4)

rolli_exec 25

+--------- On the 4th iteration, anchor is 4
v

1 2 3 4 5 6 7 | seq_along(first_vec(data))
|
| Align In-Window Elements
* * * * | "left" {4, 5, 6, 7}

* * * * | "center" {3, 4, 5, 6} <- default
* * * * | "right" {1, 2, 3, 4}

For the case of "center" with even sized windows more elements will be to the right than to the left
of the anchor.

Correspondence to rollby_exec

rolli_exec is a slightly more efficient implementation of:

function(fun, data, n, align, ...)
roll_by_exec(
fun, data,
width=n - 1,
offset=((match(align, c('left', 'center', 'right')) - 1) / 2) * (1 - n)
bounds="[]",
...

)

Window element counts correspond to an interval width as n - 1, e.g.:

1 2 3 | n = 3
[] | width = 3 - 1 = 2 = n - 1

Unlike rolli_exec, rollby_exec only supports fixed width windows.

The align values correspond to numeric values as follows: "left" to 0, "center" to -width/2, and
"right" to -width. The default window alignment is equivalent to "left" for rollby_exec, which is
different than for this function.

[]: R:%20%20%20%20%20 rollby_exec: R:%60rollby_exec%60 rollby_exec: R:%60rollby_exec%60

Data Elements

data is made up of "elements", where an "element" is a vector element if data is an atomic vector,
or a "row" if it is a "data.frame" / list of equal-length atomic vectors. Elements of data are arrayed
on the real line by position. The default is for each element to be located at its integer rank, i.e.
the first element is at 1, the second at 2, and so on. Rank position is the sole and implicit option
for rolli_exec, which will be more efficient for that case, slightly so for by = 1, and more so for
larger values of by.

See Also

Compilation for more details on the behavior and constraints of "r2c_fun" functions, package
overview for other r2c concepts.

Other runners: group_exec(), rollby_exec()

26 square

Examples

r2c_mean <- r2cq(mean(x))
with(

mtcars,
rolli_exec(r2c_mean, hp, n=5)

)

Effect of align and partial
r2c_len <- r2cq(length(x))
dat <- runif(5)
rolli_exec(r2c_len, dat, n=5, align='left', partial=TRUE)
rolli_exec(r2c_len, dat, n=5, align='center', partial=TRUE)
rolli_exec(r2c_len, dat, n=5, align='right', partial=TRUE)
rolli_exec(r2c_mean, dat, n=5, align='left')

Variable length windows
rolli_exec(r2c_len, dat, n=c(1,3,1,3,1), align='left', partial=TRUE)

square Raise a Vector to the Power of Two

Description

Implemented as x * x to match what R does with x ^ 2.

Usage

square(x)

Arguments

x a numeric vector

Value

x, squared

Index

∗ runners
group_exec, 4
rollby_exec, 18
rolli_exec, 23

alist, 13

base::dyn.load, 7
base::dyn.unload, 8
base::eval, 3, 5, 19, 24
base::getLoadedDLLs, 8
base::mean, 8
base::numeric, 9
bsac, 3

Compilation, 5, 22, 25
Compilation facilities, 2
compilation functions, 5, 15–17, 19, 24
Control structures, 2

date, 8
date-time, 8
dyn.load, 12

eval, 3
Expression types, 2

first_vec, 4, 22

get_c_code (r2c-inspect), 15
get_compile_out (r2c-inspect), 15
get_r_code, 12, 14
get_r_code (r2c-inspect), 15
get_so_loc, 8
get_so_loc (r2c-inspect), 15
group, 2
group statistic, 2
group_exec, 4, 10, 22, 25

Inspect, 2
inspection functions, 14

iteration-constant, 3, 5, 11, 19, 24

lcurry, 6
loaded_r2c_dynlibs, 7, 16

match.call, 13
mean1, 8
Memory, 2

numeric_along, 9
numeric_alongn (numeric_along), 9

package overview, 5, 14, 22, 25
Performance, 2
preprocess, 14
Preprocessing, 2
preprocessing, 14
process_groups, 10

quote, 12, 13

r2c (r2c-package), 2
r2c-compile, 8, 11
r2c-inspect, 15
r2c-package, 2
r2cf (r2c-compile), 11
r2cl (r2c-compile), 11
r2cq, 16
r2cq (r2c-compile), 11
reuse_calls, 13, 16
rollat_exec (rollby_exec), 18
rollbw_exec (rollby_exec), 18
rollby_exec, 5, 18, 23–25
rolli_exec, 5, 18–22, 23, 25
runner, 4, 14, 18, 23
Runners, 2
runners, 11, 13, 14

show_c_code (r2c-inspect), 15
square, 26
Supported functions, 2

27

28 INDEX

supported R function calls, 11

time interval, 8

unload_r2c_dynlibs
(loaded_r2c_dynlibs), 7

windows, 2

	r2c-package
	bsac
	first_vec
	group_exec
	lcurry
	loaded_r2c_dynlibs
	mean1
	numeric_along
	process_groups
	r2c-compile
	r2c-inspect
	reuse_calls
	rollby_exec
	rolli_exec
	square
	Index

