
Package: tinyplot (via r-universe)
July 25, 2024

Type Package

Title Lightweight Extension of the Base R Graphics System

Version 0.1.0.99

Date 2024-06-19

Description Lightweight extension of the base R graphics system, with
support for automatic legends, facets, and various other
enhancements.

License Apache License (>= 2)

Depends R (>= 4.0)

Imports graphics, grDevices, methods, stats, tools, utils

Suggests altdoc (>= 0.3.0), basetheme, fontquiver, png, rsvg, svglite,
tinytest, tinysnapshot (>= 0.0.3), knitr

Encoding UTF-8

RoxygenNote 7.3.2

URL https://grantmcdermott.com/tinyplot/

BugReports https://github.com/grantmcdermott/tinyplot/issues

Roxygen list(markdown = TRUE)

Repository https://fastverse.r-universe.dev

RemoteUrl https://github.com/grantmcdermott/tinyplot

RemoteRef HEAD

RemoteSha b6c6ed25c303649cb12f493f267c7895568d69e0

Contents
draw_legend . 2
get_saved_par . 4
tinyplot.density . 6
tpar . 17

Index 20

1

https://grantmcdermott.com/tinyplot/
https://github.com/grantmcdermott/tinyplot/issues

2 draw_legend

draw_legend Calculate placement of legend and draw it

Description

Internal function used to calculate the placement of (including outside the plotting area) and drawing
of legend.

Usage

draw_legend(
legend = NULL,
legend_args = NULL,
by_dep = NULL,
lgnd_labs = NULL,
type = NULL,
pch = NULL,
lty = NULL,
lwd = NULL,
col = NULL,
bg = NULL,
cex = NULL,
gradient = FALSE,
lmar = NULL,
has_sub = FALSE,
new_plot = TRUE

)

Arguments

legend Legend placement keyword or list, passed down from tinyplot.

legend_args Additional legend arguments to be passed to legend().

by_dep The (deparsed) "by" grouping variable name.

lgnd_labs The labels passed to legend(legend = ...).

type Plotting type(s), passed down from tinyplot.

pch Plotting character(s), passed down from tinyplot.

lty Plotting linetype(s), passed down from tinyplot.

lwd Plotting line width(s), passed down from tinyplot.

col Plotting colour(s), passed down from tinyplot.

bg Plotting character background fill colour(s), passed down from tinyplot.

cex Plotting character expansion(s), passed down from tinyplot.

gradient Logical indicating whether a continuous gradient swatch should be used to rep-
resent the colors.

draw_legend 3

lmar Legend margins (in lines). Should be a numeric vector of the form c(inner,
outer), where the first number represents the "inner" margin between the legend
and the plot, and the second number represents the "outer" margin between the
legend and edge of the graphics device. If no explicit value is provided by the
user, then reverts back to tpar("lmar") for which the default values are c(1.0,
0.1).

has_sub Logical. Does the plot have a sub-caption. Only used if keyword position is
"bottom!", in which case we need to bump the legend margin a bit further.

new_plot Logical. Should we be calling plot.new internally?

Value

No return value, called for side effect of producing a(n empty) plot with a legend in the margin.

Examples

oldmar = par("mar")

draw_legend(
legend = "right!", ## default (other options incl, "left(!)", ""bottom(!)", etc.)
legend_args = list(title = "Key", bty = "o"),
lgnd_labs = c("foo", "bar"),
type = "p",
pch = 21:22,
col = 1:2

)

The legend is placed in the outer margin...
box("figure", col = "cyan", lty = 4)
... and the plot is proportionally adjusted against the edge of this
margin.
box("plot")
You can add regular plot objects per normal now
plot.window(xlim = c(1,10), ylim = c(1,10))
points(1:10)
points(10:1, pch = 22, col = "red")
axis(1); axis(2)
etc.

Important: A side effect of draw_legend is that the inner margins have been
adjusted. (Here: The right margin, since we called "right!" above.)
par("mar")

To reset you should call `dev.off()` or just reset manually.
par(mar = oldmar)

Note that the inner and outer margin of the legend itself can be set via
the `lmar` argument. (This can also be set globally via
`tpar(lmar = c(inner, outer))`.)
draw_legend(

legend_args = list(title = "Key", bty = "o"),

4 get_saved_par

lgnd_labs = c("foo", "bar"),
type = "p",
pch = 21:22,
col = 1:2,
lmar = c(0, 0.1) ## set inner margin to zero

)
box("figure", col = "cyan", lty = 4)

par(mar = oldmar)

Continuous (gradient) legends are also supported
draw_legend(

legend = "right!",
legend_args = list(title = "Key"),
lgnd_labs = LETTERS[1:5],
col = hcl.colors(5),
gradient = TRUE ## enable gradient legend

)

par(mar = oldmar)

get_saved_par Retrieve the saved graphical parameters

Description

Convenience function for retrieving the graphical parameters (i.e., the full list of tag = value pairs
held in par) from either immediately before or immediately after the most recent tinyplot call.

Usage

get_saved_par(when = c("before", "after"))

Arguments

when character. From when should the saved parameters be retrieved? Either "before"
(the default) or "after" the preceding tinyplot call.

Details

A potential side-effect of tinyplot is that it can change a user’s par settings. For example, it may ad-
just the inner and outer plot margins to make space for an automatic legend; see draw_legend. While
it is possible to immediately restore the original par settings upon exit via the tinyplot(...,
restore.par = TRUE) argument, this is not the default behaviour. The reason being that we need
to preserve the adjusted parameter settings in case users want to add further graphical annotations
to their plot (e.g., abline, text, etc.) Nevertheless, it may still prove desirable to recall and reset
these original graphical parameters after the fact (e.g., once all these extra annotations have been
added). That is the purpose of this get_saved_par function.

get_saved_par 5

Of course, users may prefer to manually capture and reset graphical parameters, as per the standard
method described in the par documentation. For example:

op = par(no.readonly = TRUE) # save current par settings
<do lots of (tiny)plotting>
par(op) # reset original pars

This standard manual approach may be safer than get_saved_par because it offers more precise
control. Specifically, the value of get_saved_par itself will be reset after ever new tinyplot call; i.e.
it may inherit an already-changed set of parameters. Users should bear these trade-offs in mind
when deciding which approach to use. As a general rule, get_saved_par offers the convenience of
resetting the original par settings even if a user forgot to save them beforehand. But one should
avoid invoking it after a series of consecutive tinyplot calls.

Finally, note that users can always call dev.off to reset all par settings to their defaults.

Value

A list of par settings.

Examples

#
Contrived example where we draw a grouped scatterplot with a legend and
manually add corresponding best fit lines for each group...
#

First draw the grouped scatterplot
tinyplot(Sepal.Length ~ Petal.Length | Species, iris)

Preserving adjusted par settings is good for adding elements to our plot
for (s in levels(iris$Species)) {

abline(
lm(Sepal.Length ~ Petal.Length, iris, subset = Species==s),
col = which(levels(iris$Species)==s)

)
}

Get saved par from before the preceding tinyplot call (but don't use yet)
sp = get_saved_par("before")

Note the changed margins will affect regular plots too, which is probably
not desirable
plot(1:10)

Reset the original parameters (could use `par(sp)` here)
tpar(sp)
Redraw our simple plot with our corrected right margin
plot(1:10)

#
Quick example going the other way, "correcting" for par.restore = TRUE...

6 tinyplot.density

#

tinyplot(Sepal.Length ~ Petal.Length | Species, iris, restore.par = TRUE)
Our added best lines will be wrong b/c of misaligned par
for (s in levels(iris$Species)) {

abline(
lm(Sepal.Length ~ Petal.Length, iris, subset = Species==s),
col = which(levels(iris$Species)==s), lty = 2

)
}
grab the par settings from the _end_ of the preceding tinyplot call to fix
tpar(get_saved_par("after"))
now the best lines are correct
for (s in levels(iris$Species)) {

abline(
lm(Sepal.Length ~ Petal.Length, iris, subset = Species==s),
col = which(levels(iris$Species)==s)

)
}

reset again to original saved par settings before exit
tpar(sp)

tinyplot.density Lightweight extension of the base R plotting function

Description

Enhances the base plot function. Supported features include automatic legends and facets for
grouped data, additional plot types, theme customization, and so on. Users can call either tinyplot(),
or its shorthand alias plt().

Usage

S3 method for class 'density'
tinyplot(
x = NULL,
by = NULL,
facet = NULL,
facet.args = NULL,
type = c("l", "area"),
xlim = NULL,
ylim = NULL,
main = NULL,
sub = NULL,
xlab = NULL,
ylab = NULL,
ann = par("ann"),

tinyplot.density 7

axes = TRUE,
frame.plot = axes,
asp = NA,
grid = NULL,
pch = NULL,
col = NULL,
lty = NULL,
lwd = NULL,
bg = NULL,
fill = NULL,
restore.par = FALSE,
...

)

tinyplot(x, ...)

Default S3 method:
tinyplot(
x = NULL,
y = NULL,
by = NULL,
facet = NULL,
facet.args = NULL,
data = NULL,
type = "p",
xlim = NULL,
ylim = NULL,
log = "",
main = NULL,
sub = NULL,
xlab = NULL,
ylab = NULL,
ann = par("ann"),
axes = TRUE,
frame.plot = axes,
asp = NA,
grid = NULL,
palette = NULL,
legend = NULL,
pch = NULL,
lty = NULL,
lwd = NULL,
col = NULL,
bg = NULL,
fill = NULL,
alpha = NULL,
cex = 1,
restore.par = FALSE,

8 tinyplot.density

xmin = NULL,
xmax = NULL,
ymin = NULL,
ymax = NULL,
ribbon.alpha = NULL,
add = FALSE,
file = NULL,
width = NULL,
height = NULL,
empty = FALSE,
...

)

S3 method for class 'formula'
tinyplot(
x = NULL,
data = parent.frame(),
facet = NULL,
facet.args = NULL,
type = "p",
xlim = NULL,
ylim = NULL,
main = NULL,
sub = NULL,
xlab = NULL,
ylab = NULL,
ann = par("ann"),
axes = TRUE,
frame.plot = axes,
asp = NA,
grid = NULL,
pch = NULL,
col = NULL,
lty = NULL,
lwd = NULL,
restore.par = FALSE,
formula = NULL,
subset = NULL,
na.action = NULL,
drop.unused.levels = TRUE,
...

)

plt(x, ...)

Arguments

x, y the x and y arguments provide the x and y coordinates for the plot. Any rea-
sonable way of defining the coordinates is acceptable; most likely the names of

tinyplot.density 9

existing vectors or columns of data frames. See the ’Examples’ section below,
or the function xy.coords for details. If supplied separately, x and y must be of
the same length.

by grouping variable(s). The default behaviour is for groups to be represented in
the form of distinct colours, which will also trigger an automatic legend. (See
legend below for customization options.) However, groups can also be pre-
sented through other plot parameters (e.g., pch or lty) by passing an appropri-
ate "by" keyword; see Examples. Note that continuous (i.e., gradient) colour
legends are also supported if the user passes a numeric or integer to by.

facet the faceting variable(s) that you want arrange separate plot windows by. Can be
specified in various ways:

• In "atomic" form, e.g. facet = fvar. To facet by multiple variables in
atomic form, simply interact them, e.g. interaction(fvar1, fvar2) or
factor(fvar1):factor(fvar2).

• As a one-sided formula, e.g. facet = ~fvar. Multiple variables can be
specified in the formula RHS, e.g. ~fvar1 + fvar2 or ~fvar1:fvar2. Note
that these multi-variable cases are all treated equivalently and converted
to interaction(fvar1, fvar2, ...) internally. (No distinction is made
between different types of binary operators, for example, and so f1+f2 is
treated the same as f1:f2, is treated the same as f1*f2, etc.)

• As a two-side formula, e.g. facet = fvar1 ~ fvar2. In this case, the facet
windows are arranged in a fixed grid layout, with the formula LHS defining
the facet rows and the RHS defining the facet columns. At present only
single variables on each side of the formula are well supported. (We don’t
recommend trying to use multiple variables on either the LHS or RHS of
the two-sided formula case.)

• As a special "by" convenience keyword, in which case facets will match
the grouping variable(s) passed to by above.

facet.args an optional list of arguments for controlling faceting behaviour. (Ignored if
facet is NULL.) Supported arguments are as follows:

• nrow, ncol for overriding the default "square" facet window arrangement.
Only one of these should be specified, but nrow will take precedence if both
are specified together. Ignored if a two-sided formula is passed to the main
facet argument, since the layout is arranged in a fixed grid.

• fmar a vector of form c(b,l,t,r) for controlling the base margin between
facets in terms of lines. Defaults to the value of tpar("fmar"), which
should be c(1,1,1,1), i.e. a single line of padding around each individual
facet, assuming it hasn’t been overridden by the user as part their global
tpar settings. Note some automatic adjustments are made for certain lay-
outs, and depending on whether the plot is framed or not, to reduce excess
whitespace. See tpar for more details.

• cex, font, col, bg, border for adjusting the facet title text and background.
Default values for these arguments are inherited from tpar (where they take
a "facet." prefix, e.g. tpar("facet.cex")). The latter function can also be
used to set these features globally for all tinyplot plots.

type character string giving the type of plot desired. Options are:

10 tinyplot.density

• The same set of 1-character values supported by plot: "p" for points, "l"
for lines, "b" for both points and lines, "c" for empty points joined by lines,
"o" for overplotted points and lines, "s" and "S" for stair steps, and "h" for
histogram-like vertical lines. Specifying "n" produces an empty plot over
the extent of the data, but with no internal elements (see also the empty
argument below).

• Additional tinyplot types:
– "jitter" (alias "j") for jittered points.
– "rect", "segments", "polygon", or "polypath", which are all equiv-

alent to their base counterparts, but don’t require an existing plot win-
dow.

– "boxplot", "histogram" (alias "hist"), or "density" for distribu-
tion plots.

– "pointrange" or "errorbar" for segment intervals, and "ribbon" or
"area" for polygon intervals (where area plots are a special case of
ribbon plots with ymin set to 0 and ymax set to y; see below).

xlim the x limits (x1, x2) of the plot. Note that x1 > x2 is allowed and leads to a
‘reversed axis’. The default value, NULL, indicates that the range of the finite
values to be plotted should be used.

ylim the y limits of the plot.

main a main title for the plot, see also title.

sub a subtitle for the plot.

xlab a label for the x axis, defaults to a description of x.

ylab a label for the y axis, defaults to a description of y.

ann a logical value indicating whether the default annotation (title and x and y axis
labels) should appear on the plot.

axes a logical value indicating whether both axes should be drawn on the plot. Use
graphical parameter "xaxt" or "yaxt" to suppress just one of the axes.

frame.plot a logical indicating whether a box should be drawn around the plot. Can also
use frame as an acceptable argument alias.

asp the y/xy/x aspect ratio, see plot.window.

grid argument for plotting a background panel grid, one of either:

• a logical (i.e., TRUE to draw the grid), or
• a panel grid plotting function like grid(). Note that this argument replaces

the panel.first and panel.last arguments from base plot() and tries to
make the process more seamless with better default behaviour. The default
behaviour is determined by (and can be set globally through) the value of
tpar("grid").

pch plotting "character", i.e., symbol to use. Character, integer, or vector of length
equal to the number of categories in the by variable. See pch. In addition, users
can supply a special pch = "by" convenience argument, in which case the char-
acters will automatically loop over the number groups. This automatic looping
will begin at the global character value (i.e., par("pch")) and recycle as neces-
sary.

tinyplot.density 11

col plotting color. Character, integer, or vector of length equal to the number of cat-
egories in the by variable. See col. Note that the default behaviour in tinyplot
is to vary group colors along any variables declared in the by argument. Thus,
specifying colors manually should not be necessary unless users wish to override
the automatic colors produced by this grouping process. Typically, this would
only be done if grouping features are deferred to some other graphical parameter
(i.e., passing the "by" keyword to one of pch, lty, lwd, or bg; see below.)

lty line type. Character, integer, or vector of length equal to the number of cate-
gories in the by variable. See lty. In addition, users can supply a special lty =
"by" convenience argument, in which case the line type will automatically loop
over the number groups. This automatic looping will begin at the global line
type value (i.e., par("lty")) and recycle as necessary.

lwd line width. Numeric scalar or vector of length equal to the number of categories
in the by variable. See lwd. In addition, users can supply a special lwd = "by"
convenience argument, in which case the line width will automatically loop over
the number of groups. This automatic looping will be centered at the global line
width value (i.e.,

bg background fill color for the open plot symbols 21:25 (see points.default),
as well as ribbon and area plot types. For the latter group—including filled
density plots—an automatic alpha transparency adjustment will be applied (see
the ribbon.alpha argument further below). Users can also supply either one of
two special convenience arguments that will cause the background fill to inherit
the automatic grouped coloring behaviour of col:

• bg = "by" will insert a background fill that inherits the main color mappings
from col.

• by = <numeric[0,1]> (i.e., a numeric in the range [0,1]) will insert a
background fill that inherits the main color mapping(s) from col, but with
added alpha-transparency.

For both of these convenience arguments, note that the (grouped) bg mappings
will persist even if the (grouped) col defaults are themselves overridden. This
can be useful if you want to preserve the grouped palette mappings by back-
ground fill but not boundary color, e.g. filled points. See examples.

fill alias for bg. If non-NULL values for both bg and fill are provided, then the
latter will be ignored in favour of the former.

restore.par a logical value indicating whether the par settings prior to calling tinyplot
should be restored on exit. Defaults to FALSE, which makes it possible to add
elements to the plot after it has been drawn. However, note the the outer margins
of the graphics device may have been altered to make space for the tinyplot
legend. Users can opt out of this persistent behaviour by setting to TRUE in-
stead. See also get_saved_par for another option to recover the original par
settings, as well as longer discussion about the trade-offs involved.

... other graphical parameters. See par or the "Details" section of plot.

data a data.frame (or list) from which the variables in formula should be taken. A
matrix is converted to a data frame.

log a character string which contains "x" if the x axis is to be logarithmic, "y" if the
y axis is to be logarithmic and "xy" or "yx" if both axes are to be logarithmic.

12 tinyplot.density

palette one of the following options:
• NULL (default), in which case the palette will be chosen according to the

class and cardinality of the "by" grouping variable. For non-ordered fac-
tors or strings with a reasonable number of groups, this will inherit directly
from the user’s default palette (e.g., "R4"). In other cases, including or-
dered factors and high cardinality, the "Viridis" palette will be used instead.
Note that a slightly restricted version of the "Viridis" palette—where ex-
treme color values have been trimmed to improve visual perception—will
be used for ordered factors and continuous variables. In the latter case of a
continuous grouping variable, we also generate a gradient legend swatch.

• A convenience string corresponding to one of the many palettes listed by
either palette.pals() or hcl.pals(). Note that the string can be case-
insensitive (e.g., "Okabe-Ito" and "okabe-ito" are both valid).

• A palette-generating function. This can be "bare" (e.g., palette.colors)
or "closed" with a set of named arguments (e.g., palette.colors(palette
= "Okabe-Ito", alpha = 0.5)). Note that any unnamed arguments will be
ignored and the key n argument, denoting the number of colours, will auto-
matically be spliced in as the number of groups.

legend one of the following options:
• NULL (default), in which case the legend will be determined by the group-

ing variable. If there is no group variable (i.e., by is NULL) then no legend
is drawn. If a grouping variable is detected, then an automatic legend is
drawn to the outer right of the plotting area. Note that the legend title and
categories will automatically be inferred from the by argument and under-
lying data.

• A convenience string indicating the legend position. The string should cor-
respond to one of the position keywords supported by the base legend
function, e.g. "right", "topleft", "bottom", etc. In addition, tinyplot sup-
ports adding a trailing exclamation point to these keywords, e.g. "right!",
"topleft!", or "bottom!". This will place the legend outside the plotting area
and adjust the margins of the plot accordingly. Finally, users can also turn
off any legend printing by specifying "none".

• Logical value, where TRUE corresponds to the default case above (same
effect as specifying NULL) and FALSE turns the legend off (same effect as
specifying "none").

• A list or, equivalently, a dedicated legend() function with supported leg-
end arguments, e.g. "bty", "horiz", and so forth.

alpha a numeric in the range [0,1] for adjusting the alpha channel of the color palette,
where 0 means transparent and 1 means opaque. Use fractional values, e.g. 0.5
for semi-transparency.

cex character expansion. A numerical vector (can be a single value) giving the
amount by which plotting characters and symbols should be scaled relative to the
default. Note that NULL is equivalent to 1.0, while NA renders the characters
invisible.

xmin, xmax, ymin, ymax
minimum and maximum coordinates of relevant area or interval plot types.
Only used when the type argument is one of "rect" or "segments" (where

tinyplot.density 13

all four min-max coordinates are required), or "pointrange", "errorbar", or
"ribbon" (where only ymin and ymax required alongside x).

ribbon.alpha numeric factor modifying the opacity alpha of any ribbon shading; typically
in [0, 1]. Only used when type = "ribbon", or when the bg fill argument
is specified in a density plot (since filled density plots are converted to ribbon
plots internally). If an an applicable plot type is called but no explicit value is
provided, then will default to tpar("ribbon.alpha") (i.e., probably 0.2 unless
this has been overridden by the user in their global settings.)

add logical. If TRUE, then elements are added to the current plot rather than drawing
a new plot window. Note that the automatic legend for the added elements will
be turned off.

file character string giving the file path for writing a plot to disk. If specified, the
plot will not be displayed interactively, but rather sent to the appropriate exter-
nal graphics device (i.e., png, jpeg, pdf, or svg). As a point of convenience,
note that any global parameters held in (t)par are automatically carried over
to the external device and don’t need to be reset (in contrast to the conventional
base R approach that requires manually opening and closing the device). The
device type is determined by the file extension at the end of the provided path,
and must be one of ".png", ".jpg" (".jpeg"), ".pdf", or ".svg". (Other file types
may be supported in the future.) The file dimensions can be controlled by the
corresponding width and height arguments below, otherwise will fall back to
the "file.width" and "file.height" values held in tpar (i.e., both default-
ing to 7 inches, and where the default resolution for bitmap files is also specified
as 300 DPI).

width numeric giving the plot width in inches. Together with height, typically used
in conjunction with the file argument above, overriding the default values held
in tpar("file.width", "file.height"). If either width or height is spec-
ified, but a corresponding file argument is not provided as well, then a new
interactive graphics device dimensions will be opened along the given dimen-
sions. Note that this interactive resizing may not work consistently from within
an IDE like RStudio that has an integrated graphics windows.

height numeric giving the plot height in inches. Same considerations as width (above)
apply, e.g. will default to tpar("file.height") if not specified.

empty logical indicating whether the interior plot region should be left empty. The
default is FALSE. Setting to TRUE has a similar effect to invoking type = "n"
above, except that any legend artifacts owing to a particular plot type (e.g., lines
for type = "l" or squares for type = "area") will still be drawn correctly along-
side the empty plot. In contrast,type = "n" implicitly assumes a scatterplot and
so any legend will only depict points.

formula a formula that optionally includes grouping variable(s) after a vertical bar, e.g.
y ~ x | z. One-sided formulae are also permitted, e.g. ~ y | z. Note that the
formula and x arguments should not be specified in the same call.

subset, na.action, drop.unused.levels
arguments passed to model.frame when extracting the data from formula and
data.

14 tinyplot.density

Details

Disregarding the enhancements that it supports, tinyplot tries as far as possible to mimic the
behaviour and syntax logic of the original base plot function. Users should therefore be able to
swap out existing plot calls for tinyplot (or its shorthand alias plt), without causing unexpected
changes to the output.

Value

No return value, called for side effect of producing a plot.

Examples

#'
aq = transform(

airquality,
Month = factor(Month, labels = month.abb[unique(Month)])

)

In most cases, `tinyplot` should be a drop-in replacement for regular
`plot` calls. For example:

op = tpar(mfrow = c(1, 2))
plot(0:10, main = "plot")
tinyplot(0:10, main = "tinyplot")
tpar(op) # restore original layout

Aside: `tinyplot::tpar()` is a (near) drop-in replacement for `par()`

Unlike vanilla plot, however, tinyplot allows you to characterize groups
using either the `by` argument or equivalent `|` formula syntax.

with(aq, tinyplot(Day, Temp, by = Month)) ## atomic method
tinyplot(Temp ~ Day | Month, data = aq) ## formula method

(Notice that we also get an automatic legend.)

You can also use the equivalent shorthand `plt()` alias if you'd like to
save on a few keystrokes

plt(Temp ~ Day | Month, data = aq) ## shorthand alias

Use standard base plotting arguments to adjust features of your plot.
For example, change `pch` (plot character) to get filled points and `cex`
(character expansion) to increase their size.

tinyplot(
Temp ~ Day | Month,
data = aq,
pch = 16,
cex = 2

)

tinyplot.density 15

We can add alpha transparency for overlapping points

tinyplot(
Temp ~ Day | Month,
data = aq,
pch = 16,
cex = 2,
alpha = 0.3

)

To get filled points with a common solid background color, use an
appropriate plotting character (21:25) and combine with one of the special
`bg` convenience arguments.
tinyplot(

Temp ~ Day | Month,
data = aq,
pch = 21, # use filled circles
cex = 2,
bg = 0.3, # numeric in [0,1] adds a grouped background fill with transparency
col = "black" # override default color mapping; give all points a black border

)

Converting to a grouped line plot is a simple matter of adjusting the
`type` argument.

tinyplot(
Temp ~ Day | Month,
data = aq,
type = "l"

)

Similarly for other plot types, including some additional ones provided
directly by tinyplot, e.g. density plots or internal plots (ribbons,
pointranges, etc.)

tinyplot(
~ Temp | Month,
data = aq,
type = "density",
fill = "by"

)

Facet plots are supported too. Facets can be drawn on their own...

tinyplot(
Temp ~ Day,
facet = ~ Month,
data = aq,
type = "area",
main = "Temperatures by month"

)

... or combined/contrasted with the by (colour) grouping.

16 tinyplot.density

aq = transform(aq, Summer = Month %in% c("Jun", "Jul", "Aug"))
tinyplot(

Temp ~ Day | Summer,
facet = ~ Month,
data = aq,
type = "area",
palette = "dark2",
main = "Temperatures by month and season"

)

Users can override the default square window arrangement by passing `nrow`
or `ncol` to the helper facet.args argument. Note that we can also reduce
axis label repetition across facets by turning the plot frame off.

tinyplot(
Temp ~ Day | Summer,
facet = ~ Month, facet.args = list(nrow = 1),
data = aq,
type = "area",
palette = "dark2",
frame = FALSE,
main = "Temperatures by month and season"

)

Use a two-sided formula to arrange the facet windows in a fixed grid.
LHS -> facet rows; RHS -> facet columns

aq$hot = ifelse(aq$Temp>=75, "hot", "cold")
aq$windy = ifelse(aq$Wind>=15, "windy", "calm")
tinyplot(
Temp ~ Day,
facet = windy ~ hot,
data = aq

)

The (automatic) legend position and look can be customized using
appropriate arguments. Note the trailing "!" in the `legend` position
argument below. This tells `tinyplot` to place the legend _outside_ the plot
area.

tinyplot(
Temp ~ Day | Month,
data = aq,
type = "l",
legend = legend("bottom!", title = "Month of the year", bty = "o")

)

The default group colours are inherited from either the "R4" or "Viridis"
palettes, depending on the number of groups. However, all palettes listed
by `palette.pals()` and `hcl.pals()` are supported as convenience strings,
or users can supply a valid palette-generating function for finer control

tpar 17

tinyplot(
Temp ~ Day | Month,
data = aq,
type = "l",
palette = "tableau"

)

It's possible to further customize the look of you plots using familiar
arguments and base plotting theme settings (e.g., via `(t)par`).

tpar(family = "HersheySans", las = 1)
tinyplot(

Temp ~ Day | Month,
data = aq,
type = "b", pch = 16,
palette = "tableau", alpha = 0.5,
main = "Daily temperatures by month",
frame = FALSE, grid = TRUE

)

Note: For more examples and a detailed walkthrough, please see the
introductory tinyplot tutorial available online:
https://grantmcdermott.com/tinyplot/vignettes/intro_tutorial.html

tpar Set or query graphical parameters

Description

Extends par, serving as a (near) drop-in replacement for setting or querying graphical parameters.
The key differences is that, beyond supporting the standard group of R graphical parameters in par,
tpar also supports additional graphical parameters that are provided by tinyplot. Similar to par,
parameters are set by passing appropriate key = value argument pairs, and multiple parameters can
be set or queried at the same time.

Usage

tpar(...)

Arguments

... arguments of the form key = value. This includes all of the parameters typi-
cally supported by par, as well as the tinyplot-specific ones described in the
’Graphical Parameters’ section below.

18 tpar

Details

The tinyplot-specific parameters are saved in an internal environment called .tpar for perfor-
mance and safety reasons. However, they can also be set at package load time via options, which
may prove convenient for users that want to enable different default behaviour at startup (e.g.,
through an .Rprofile file). These options all take a tinyplot_* prefix, e.g. options(tinyplot_grid
= TRUE, tinyplot_facet.bg = "grey90").

For their part, any "base" graphical parameters are caught dynamically and passed on to par as ap-
propriate. Technically, only parameters that satisfy par(..., no.readonly = TRUE) are evaluated.

However, note the important distinction: tpar only evaluates parameters from par if they are passed
explicitly by the user. This means that tpar should not be used to capture the (invisible) state of a
user’s entire set of graphics parameters, i.e. tpar() != par(). If you want to capture the all existing
graphics settings, then you should rather use par() instead.

Value

When parameters are set, their previous values are returned in an invisible named list. Such a list
can be passed as an argument to tpar to restore the parameter values.

When just one parameter is queried, the value of that parameter is returned as (atomic) vector. When
two or more parameters are queried, their values are returned in a list, with the list names giving the
parameters.

Note the inconsistency: setting one parameter returns a list, but querying one parameter returns a
vector.

Additional Graphical Parameters

facet.cex Expansion factor for facet titles. Defaults to 1.

facet.font An integer corresponding to the desired font face for facet titles. For most font families and graphics devices, one of four possible values: 1 (regular), 2 (bold), 3 (italic), or 4 (bold italic). Defaults to NULL, which is equivalent to 1 (i.e., regular).

facet.col Character or integer specifying the facet text colour. If an integer, will correspond to the user’s default global colour palette (see palette). Defaults to NULL, which is equivalent to "black".

facet.bg Character or integer specifying the facet background colour. If an integer, will correspond to the user’s default colour palette (see palette). Passed rect. Defaults to NULL (none).

facet.border Character or integer specifying the facet border colour. If an integer, will correspond to the users default colour palette (see palette). Passed rect. Defaults to NA (none).

file.height Numeric specifying the height (in inches) of any plot that is written to disk using the tinyplot(..., file = X) argument. Defaults to 7.

file.width Numeric specifying the width (in inches) of any plot that is written to disk using the tinyplot(..., file = X) argument. Defaults to 7.

tpar 19

file.res Numeric specifying the resolution (in dots per square inch) of any plot that is written to disk in bitmap format (i.e., PNG or JPEG) using the tinyplot(..., file = X) argument. Defaults to 300.

fmar A numeric vector of form c(b,l,t,r) for controlling the (base) margin padding, in terms of lines, between the individual facets in a faceted plot. Defaults to c(1,1,1,1), i.e. a single line of padding around each facet. If more that three facets are detected, the fmar parameter is scaled by 0.75 (i.e., three-quarters) to reduce the excess whitespace that would otherwise arise due to the absent axes lines and labels. (An exception is made for 2x2 plots to better match the cex expansion logic of the base graphics system under this particular layout.) Similarly, note that an extra 0.5 lines is subtracted from each side of the facet padding for plots that aren’t framed, to reduce excess whitespace.

grid Logical indicating whether a background panel grid should be added to plots automatically. Defaults to NULL, which is equivalent to FALSE.

lmar A numeric vector of form c(inner, outer) that gives the margin padding, in terms of lines, around the automatic tinyplot legend. Defaults to c(1.0, 0.1), where the first number represents the "inner" margin between the legend and the plot region, and the second number represents the "outer" margin between the legend and edge of the graphics device. (Note that an exception for the definition of the "outer" legend margin occurs when the legend placement is "top!", since the legend is placed above the plot region but below the main title. In such cases, the outer margin is relative to the existing gap between the title and the plot region, which is itself determined by par("mar")[3].)

ribbon.alpha Numeric factor in the range [0,1] for modifying the opacity alpha of "ribbon" and "area" (and alike) type plots. Default value is 0.2.

Examples

Return a list of existing base and tinyplot graphic params
tpar("las", "pch", "facet.bg", "facet.cex", "grid")

Simple facet plot with these default values
tinyplot(mpg ~ wt, data = mtcars, facet = ~am)

Set params to something new. Similar to graphics::par(), note that we save
the existing values at the same time by assigning to an object.
op = tpar(

las = 1,
pch = 2,
facet.bg = "grey90",
facet.cex = 2,
grid = TRUE

)

Re-plot with these new params
tinyplot(mpg ~ wt, data = mtcars, facet = ~am)

Reset back to original values
tpar(op)

Important: tpar() only evalutes parameters that have been passed explicitly
by the user. So it it should not be used to query and set (restore)
parameters that weren't explicitly requested, i.e. tpar() != par().

Note: The tinyplot-specific parameters can also be be set via `options`
with a `tinyplot_*` prefix, which can be convenient for enabling
different default behaviour at startup time (e.g., via an .Rprofile
file). Example:
options(tinyplot_grid = TRUE, tinyplot_facet.bg = "grey90")

Index

abline, 4

dev.off, 5
draw_legend, 2, 4

get_saved_par, 4, 4, 5, 11

jpeg, 13

options, 18

palette, 12, 18
par, 4, 5, 11, 17, 18
pdf, 13
plot, 6, 10, 11, 14
plt (tinyplot.density), 6
png, 13

rect, 18

svg, 13

text, 4
tinyplot, 2, 4, 5
tinyplot (tinyplot.density), 6
tinyplot.density, 6
tpar, 9, 13, 17

xy.coords, 9

20

	draw_legend
	get_saved_par
	tinyplot.density
	tpar
	Index

