
Package: vctrs (via r-universe)
July 13, 2024

Title Vector Helpers

Version 0.6.5.9000

Description Defines new notions of prototype and size that are used to
provide tools for consistent and well-founded type-coercion and
size-recycling, and are in turn connected to ideas of type- and
size-stability useful for analysing function interfaces.

License MIT + file LICENSE

URL https://vctrs.r-lib.org/, https://github.com/r-lib/vctrs

BugReports https://github.com/r-lib/vctrs/issues

Depends R (>= 3.5.0)

Imports cli (>= 3.4.0), glue, lifecycle (>= 1.0.3), rlang (>= 1.1.0)

Suggests bit64, covr, crayon, dplyr (>= 0.8.5), generics, knitr,
pillar (>= 1.4.4), pkgdown (>= 2.0.1), rmarkdown, testthat (>=
3.0.0), tibble (>= 3.1.3), waldo (>= 0.2.0), withr, xml2,
zeallot

VignetteBuilder knitr

Config/Needs/website tidyverse/tidytemplate

Config/testthat/edition 3

Config/testthat/parallel true

Encoding UTF-8

Language en-GB

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Repository https://fastverse.r-universe.dev

RemoteUrl https://github.com/r-lib/vctrs

RemoteRef HEAD

RemoteSha 920903d95fb405a5ac6c56c35a2c544c5aa3fa3b

1

https://vctrs.r-lib.org/
https://github.com/r-lib/vctrs
https://github.com/r-lib/vctrs/issues

2 Contents

Contents
data_frame . 3
df_list . 5
df_ptype2 . 6
faq-compatibility-types . 7
faq-error-incompatible-attributes . 9
faq-error-scalar-type . 9
howto-faq-coercion . 11
howto-faq-coercion-data-frame . 15
howto-faq-fix-scalar-type-error . 23
internal-faq-matches-algorithm . 24
internal-faq-ptype2-identity . 31
list_drop_empty . 33
list_of . 33
missing . 34
name_spec . 35
new_data_frame . 37
obj_is_list . 37
reference-faq-compatibility . 39
runs . 40
theory-faq-coercion . 41
theory-faq-recycling . 46
vec-rep . 47
vec-set . 49
vector-checks . 53
vec_as_names . 55
vec_bind . 58
vec_c . 61
vec_cast . 64
vec_chop . 66
vec_compare . 69
vec_count . 70
vec_detect_complete . 71
vec_duplicate . 72
vec_equal . 74
vec_expand_grid . 75
vec_fill_missing . 76
vec_init . 77
vec_interleave . 78
vec_locate_matches . 79
vec_match . 85
vec_names . 87
vec_order . 88
vec_ptype . 90
vec_ptype2.logical . 92
vec_rank . 94
vec_recycle . 96

data_frame 3

vec_seq_along . 97
vec_size . 98
vec_split . 100
vec_unique . 101
%0% . 102

Index 103

data_frame Construct a data frame

Description

data_frame() constructs a data frame. It is similar to base::data.frame(), but there are a few
notable differences that make it more in line with vctrs principles. The Properties section outlines
these.

Usage

data_frame(
...,
.size = NULL,
.name_repair = c("check_unique", "unique", "universal", "minimal", "unique_quiet",

"universal_quiet"),
.error_call = current_env()

)

Arguments

... Vectors to become columns in the data frame. When inputs are named, those
names are used for column names.

.size The number of rows in the data frame. If NULL, this will be computed as the
common size of the inputs.

.name_repair One of "check_unique", "unique", "universal", "minimal", "unique_quiet",
or "universal_quiet". See vec_as_names() for the meaning of these options.

.error_call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort() for more information.

Details

If no column names are supplied, "" will be used as a default name for all columns. This is applied
before name repair occurs, so the default name repair of "check_unique" will error if any unnamed
inputs are supplied and "unique" (or "unique_quiet") will repair the empty string column names
appropriately. If the column names don’t matter, use a "minimal" name repair for convenience and
performance.

4 data_frame

Properties

• Inputs are recycled to a common size with vec_recycle_common().

• With the exception of data frames, inputs are not modified in any way. Character vectors are
never converted to factors, and lists are stored as-is for easy creation of list-columns.

• Unnamed data frame inputs are automatically unpacked. Named data frame inputs are stored
unmodified as data frame columns.

• NULL inputs are completely ignored.

• The dots are dynamic, allowing for splicing of lists with !!! and unquoting.

See Also

df_list() for safely creating a data frame’s underlying data structure from individual columns.
new_data_frame() for constructing the actual data frame from that underlying data structure. To-
gether, these can be useful for developers when creating new data frame subclasses supporting
standard evaluation.

Examples

data_frame(x = 1, y = 2)

Inputs are recycled using tidyverse recycling rules
data_frame(x = 1, y = 1:3)

Strings are never converted to factors
class(data_frame(x = "foo")$x)

List columns can be easily created
df <- data_frame(x = list(1:2, 2, 3:4), y = 3:1)

However, the base print method is suboptimal for displaying them,
so it is recommended to convert them to tibble
if (rlang::is_installed("tibble")) {

tibble::as_tibble(df)
}

Named data frame inputs create data frame columns
df <- data_frame(x = data_frame(y = 1:2, z = "a"))

The `x` column itself is another data frame
df$x

Again, it is recommended to convert these to tibbles for a better
print method
if (rlang::is_installed("tibble")) {

tibble::as_tibble(df)
}

Unnamed data frame input is automatically unpacked
data_frame(x = 1, data_frame(y = 1:2, z = "a"))

df_list 5

df_list Collect columns for data frame construction

Description

df_list() constructs the data structure underlying a data frame, a named list of equal-length vec-
tors. It is often used in combination with new_data_frame() to safely and consistently create a
helper function for data frame subclasses.

Usage

df_list(
...,
.size = NULL,
.unpack = TRUE,
.name_repair = c("check_unique", "unique", "universal", "minimal", "unique_quiet",

"universal_quiet"),
.error_call = current_env()

)

Arguments

... Vectors of equal-length. When inputs are named, those names are used for
names of the resulting list.

.size The common size of vectors supplied in If NULL, this will be computed as
the common size of the inputs.

.unpack Should unnamed data frame inputs be unpacked? Defaults to TRUE.

.name_repair One of "check_unique", "unique", "universal", "minimal", "unique_quiet",
or "universal_quiet". See vec_as_names() for the meaning of these options.

.error_call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort() for more information.

Properties

• Inputs are recycled to a common size with vec_recycle_common().

• With the exception of data frames, inputs are not modified in any way. Character vectors are
never converted to factors, and lists are stored as-is for easy creation of list-columns.

• Unnamed data frame inputs are automatically unpacked. Named data frame inputs are stored
unmodified as data frame columns.

• NULL inputs are completely ignored.

• The dots are dynamic, allowing for splicing of lists with !!! and unquoting.

6 df_ptype2

See Also

new_data_frame() for constructing data frame subclasses from a validated input. data_frame()
for a fast data frame creation helper.

Examples

`new_data_frame()` can be used to create custom data frame constructors
new_fancy_df <- function(x = list(), n = NULL, ..., class = NULL) {

new_data_frame(x, n = n, ..., class = c(class, "fancy_df"))
}

Combine this constructor with `df_list()` to create a safe,
consistent helper function for your data frame subclass
fancy_df <- function(...) {

data <- df_list(...)
new_fancy_df(data)

}

df <- fancy_df(x = 1)
class(df)

df_ptype2 Coercion between two data frames

Description

df_ptype2() and df_cast() are the two functions you need to call from vec_ptype2() and
vec_cast() methods for data frame subclasses. See ?howto-faq-coercion-data-frame. Their main
job is to determine the common type of two data frames, adding and coercing columns as needed,
or throwing an incompatible type error when the columns are not compatible.

Usage

df_ptype2(x, y, ..., x_arg = "", y_arg = "", call = caller_env())

df_cast(x, to, ..., x_arg = "", to_arg = "", call = caller_env())

tib_ptype2(x, y, ..., x_arg = "", y_arg = "", call = caller_env())

tib_cast(x, to, ..., x_arg = "", to_arg = "", call = caller_env())

Arguments

x, y, to Subclasses of data frame.

... If you call df_ptype2() or df_cast() from a vec_ptype2() or vec_cast()
method, you must forward the dots passed to your method on to df_ptype2()
or df_cast().

faq-compatibility-types 7

x_arg, y_arg Argument names for x and y. These are used in error messages to inform the user
about the locations of incompatible types (see stop_incompatible_type()).

call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort() for more information.

to_arg Argument name to used in error messages to inform the user about the locations
of incompatible types (see stop_incompatible_type()).

Value

• When x and y are not compatible, an error of class vctrs_error_incompatible_type is
thrown.

• When x and y are compatible, df_ptype2() returns the common type as a bare data frame.
tib_ptype2() returns the common type as a bare tibble.

faq-compatibility-types

FAQ - How is the compatibility of vector types decided?

Description

Two vectors are compatible when you can safely:

• Combine them into one larger vector.

• Assign values from one of the vectors into the other vector.

Examples of compatible types are integer and double vectors. On the other hand, integer and char-
acter vectors are not compatible.

Common type of multiple vectors

There are two possible outcomes when multiple vectors of different types are combined into a larger
vector:

• An incompatible type error is thrown because some of the types are not compatible:

df1 <- data.frame(x = 1:3)
df2 <- data.frame(x = "foo")
dplyr::bind_rows(df1, df2)
#> Error in `dplyr::bind_rows()`:
#> ! Can't combine `..1$x` <integer> and `..2$x` <character>.

• The vectors are combined into a vector that has the common type of all inputs. In this example,
the common type of integer and logical is integer:

8 faq-compatibility-types

df1 <- data.frame(x = 1:3)
df2 <- data.frame(x = FALSE)
dplyr::bind_rows(df1, df2)
#> x
#> 1 1
#> 2 2
#> 3 3
#> 4 0

In general, the common type is the richer type, in other words the type that can represent the most
values. Logical vectors are at the bottom of the hierarchy of numeric types because they can only
represent two values (not counting missing values). Then come integer vectors, and then doubles.
Here is the vctrs type hierarchy for the fundamental vectors:

Type conversion and lossy cast errors

Type compatibility does not necessarily mean that you can convert one type to the other type.
That’s because one of the types might support a larger set of possible values. For instance, integer
and double vectors are compatible, but double vectors can’t be converted to integer if they contain
fractional values.

When vctrs can’t convert a vector because the target type is not as rich as the source type, it throws
a lossy cast error. Assigning a fractional number to an integer vector is a typical example of a lossy
cast error:

int_vector <- 1:3
vec_assign(int_vector, 2, 0.001)
#> Error in `vec_assign()`:
#> ! Can't convert from <double> to <integer> due to loss of precision.
#> * Locations: 1

faq-error-incompatible-attributes 9

How to make two vector classes compatible?

If you encounter two vector types that you think should be compatible, they might need to imple-
ment coercion methods. Reach out to the author(s) of the classes and ask them if it makes sense for
their classes to be compatible.

These developer FAQ items provide guides for implementing coercion methods:

• For an example of implementing coercion methods for simple vectors, see ?howto-faq-coercion.
• For an example of implementing coercion methods for data frame subclasses, see ?howto-faq-coercion-data-frame.

faq-error-incompatible-attributes

FAQ - Error/Warning: Some attributes are incompatible

Description

This error occurs when vec_ptype2() or vec_cast() are supplied vectors of the same classes with
different attributes. In this case, vctrs doesn’t know how to combine the inputs.

To fix this error, the maintainer of the class should implement self-to-self coercion methods for
vec_ptype2() and vec_cast().

Implementing coercion methods

• For an overview of how these generics work and their roles in vctrs, see ?theory-faq-coercion.
• For an example of implementing coercion methods for simple vectors, see ?howto-faq-coercion.
• For an example of implementing coercion methods for data frame subclasses, see ?howto-faq-coercion-data-frame.
• For a tutorial about implementing vctrs classes from scratch, see vignette("s3-vector").

faq-error-scalar-type FAQ - Error: Input must be a vector

Description

This error occurs when a function expects a vector and gets a scalar object instead. This commonly
happens when some code attempts to assign a scalar object as column in a data frame:

fn <- function() NULL
tibble::tibble(x = fn)
#> Error in `tibble::tibble()`:
#> ! All columns in a tibble must be vectors.
#> x Column `x` is a function.

fit <- lm(1:3 ~ 1)
tibble::tibble(x = fit)
#> Error in `tibble::tibble()`:
#> ! All columns in a tibble must be vectors.
#> x Column `x` is a `lm` object.

10 faq-error-scalar-type

Vectorness in base R and in the tidyverse

In base R, almost everything is a vector or behaves like a vector. In the tidyverse we have chosen to
be a bit stricter about what is considered a vector. The main question we ask ourselves to decide on
the vectorness of a type is whether it makes sense to include that object as a column in a data frame.

The main difference is that S3 lists are considered vectors by base R but in the tidyverse that’s not
the case by default:

fit <- lm(1:3 ~ 1)

typeof(fit)
#> [1] "list"
class(fit)
#> [1] "lm"

S3 lists can be subset like a vector using base R:
fit[c(1, 4)]
#> $coefficients
#> (Intercept)
#> 2
#>
#> $rank
#> [1] 1

But not in vctrs
vctrs::vec_slice(fit, c(1, 4))
#> Error in `vctrs::vec_slice()`:
#> ! `x` must be a vector, not a <lm> object.

Defused function calls are another (more esoteric) example:

call <- quote(foo(bar = TRUE, baz = FALSE))
call
#> foo(bar = TRUE, baz = FALSE)

They can be subset like a vector using base R:
call[1:2]
#> foo(bar = TRUE)
lapply(call, function(x) x)
#> [[1]]
#> foo
#>
#> $bar
#> [1] TRUE
#>
#> $baz
#> [1] FALSE

howto-faq-coercion 11

But not with vctrs:
vctrs::vec_slice(call, 1:2)
#> Error in `vctrs::vec_slice()`:
#> ! `x` must be a vector, not a call.

I get a scalar type error but I think this is a bug

It’s possible the author of the class needs to do some work to declare their class a vector. Consider
reaching out to the author. We have written a developer FAQ page to help them fix the issue.

howto-faq-coercion FAQ - How to implement ptype2 and cast methods?

Description

This guide illustrates how to implement vec_ptype2() and vec_cast() methods for existing
classes. Related topics:

• For an overview of how these generics work and their roles in vctrs, see ?theory-faq-coercion.

• For an example of implementing coercion methods for data frame subclasses, see ?howto-faq-coercion-data-frame.

• For a tutorial about implementing vctrs classes from scratch, see vignette("s3-vector")

The natural number class:
We’ll illustrate how to implement coercion methods with a simple class that represents natural
numbers. In this scenario we have an existing class that already features a constructor and methods
for print() and subset.

#' @export
new_natural <- function(x) {
if (is.numeric(x) || is.logical(x)) {
stopifnot(is_whole(x))
x <- as.integer(x)

} else {
stop("Can't construct natural from unknown type.")

}
structure(x, class = "my_natural")

}
is_whole <- function(x) {
all(x %% 1 == 0 | is.na(x))

}

#' @export
print.my_natural <- function(x, ...) {
cat("<natural>\n")
x <- unclass(x)
NextMethod()

}

12 howto-faq-coercion

#' @export
`[.my_natural` <- function(x, i, ...) {

new_natural(NextMethod())
}

new_natural(1:3)
#> <natural>
#> [1] 1 2 3
new_natural(c(1, NA))
#> <natural>
#> [1] 1 NA

Roxygen workflow:
To implement methods for generics, first import the generics in your namespace and redocument:

#' @importFrom vctrs vec_ptype2 vec_cast
NULL

Note that for each batches of methods that you add to your package, you need to export the
methods and redocument immediately, even during development. Otherwise they won’t be in
scope when you run unit tests e.g. with testthat.
Implementing double dispatch methods is very similar to implementing regular S3 methods. In
these examples we are using roxygen2 tags to register the methods, but you can also register the
methods manually in your NAMESPACE file or lazily with s3_register().

Implementing vec_ptype2():

The self-self method:
The first method to implement is the one that signals that your class is compatible with itself:

#' @export
vec_ptype2.my_natural.my_natural <- function(x, y, ...) {
x

}

vec_ptype2(new_natural(1), new_natural(2:3))
#> <natural>
#> integer(0)

vec_ptype2() implements a fallback to try and be compatible with simple classes, so it may
seem that you don’t need to implement the self-self coercion method. However, you must
implement it explicitly because this is how vctrs knows that a class that is implementing vctrs
methods (for instance this disable fallbacks to base::c()). Also, it makes your class a bit more
efficient.

The parent and children methods:
Our natural number class is conceptually a parent of <logical> and a child of <integer>, but
the class is not compatible with logical, integer, or double vectors yet:

vec_ptype2(TRUE, new_natural(2:3))
#> Error:
#> ! Can't combine `TRUE` <logical> and `new_natural(2:3)` <my_natural>.

howto-faq-coercion 13

vec_ptype2(new_natural(1), 2:3)
#> Error:
#> ! Can't combine `new_natural(1)` <my_natural> and `2:3` <integer>.

We’ll specify the twin methods for each of these classes, returning the richer class in each case.
#' @export
vec_ptype2.my_natural.logical <- function(x, y, ...) {
The order of the classes in the method name follows the order of
the arguments in the function signature, so `x` is the natural
number and `y` is the logical
x

}
#' @export
vec_ptype2.logical.my_natural <- function(x, y, ...) {
In this case `y` is the richer natural number
y

}

Between a natural number and an integer, the latter is the richer class:
#' @export
vec_ptype2.my_natural.integer <- function(x, y, ...) {
y

}
#' @export
vec_ptype2.integer.my_natural <- function(x, y, ...) {
x

}

We no longer get common type errors for logical and integer:
vec_ptype2(TRUE, new_natural(2:3))
#> <natural>
#> integer(0)

vec_ptype2(new_natural(1), 2:3)
#> integer(0)

We are not done yet. Pairwise coercion methods must be implemented for all the connected
nodes in the coercion hierarchy, which include double vectors further up. The coercion methods
for grand-parent types must be implemented separately:
#' @export
vec_ptype2.my_natural.double <- function(x, y, ...) {
y

}
#' @export
vec_ptype2.double.my_natural <- function(x, y, ...) {
x

}

Incompatible attributes:
Most of the time, inputs are incompatible because they have different classes for which no
vec_ptype2() method is implemented. More rarely, inputs could be incompatible because of
their attributes. In that case incompatibility is signalled by calling stop_incompatible_type().

14 howto-faq-coercion

In the following example, we implement a self-self ptype2 method for a hypothetical subclass of
<factor> that has stricter combination semantics. The method throws an error when the levels
of the two factors are not compatible.

#' @export
vec_ptype2.my_strict_factor.my_strict_factor <- function(x, y, ..., x_arg = "", y_arg = "") {
if (!setequal(levels(x), levels(y))) {
stop_incompatible_type(x, y, x_arg = x_arg, y_arg = y_arg)

}

x
}

Note how the methods need to take x_arg and y_arg parameters and pass them on to stop_incompatible_type().
These argument tags help create more informative error messages when the common type deter-
mination is for a column of a data frame. They are part of the generic signature but can usually
be left out if not used.

Implementing vec_cast():
Corresponding vec_cast() methods must be implemented for all vec_ptype2() methods. The
general pattern is to convert the argument x to the type of to. The methods should validate the
values in x and make sure they conform to the values of to.
Please note that for historical reasons, the order of the classes in the method name is in reverse
order of the arguments in the function signature. The first class represents to, whereas the second
class represents x.
The self-self method is easy in this case, it just returns the target input:

#' @export
vec_cast.my_natural.my_natural <- function(x, to, ...) {
x

}

The other types need to be validated. We perform input validation in the new_natural() con-
structor, so that’s a good fit for our vec_cast() implementations.

#' @export
vec_cast.my_natural.logical <- function(x, to, ...) {
The order of the classes in the method name is in reverse order
of the arguments in the function signature, so `to` is the natural
number and `x` is the logical
new_natural(x)

}
vec_cast.my_natural.integer <- function(x, to, ...) {
new_natural(x)

}
vec_cast.my_natural.double <- function(x, to, ...) {
new_natural(x)

}

With these methods, vctrs is now able to combine logical and natural vectors. It properly returns
the richer type of the two, a natural vector:

howto-faq-coercion-data-frame 15

vec_c(TRUE, new_natural(1), FALSE)
#> <natural>
#> [1] 1 1 0

Because we haven’t implemented conversions from natural, it still doesn’t know how to combine
natural with the richer integer and double types:

vec_c(new_natural(1), 10L)
#> Error in `vec_c()`:
#> ! Can't convert `..1` <my_natural> to <integer>.
vec_c(1.5, new_natural(1))
#> Error in `vec_c()`:
#> ! Can't convert `..2` <my_natural> to <double>.

This is quick work which completes the implementation of coercion methods for vctrs:

#' @export
vec_cast.logical.my_natural <- function(x, to, ...) {
In this case `to` is the logical and `x` is the natural number
attributes(x) <- NULL
as.logical(x)

}
#' @export
vec_cast.integer.my_natural <- function(x, to, ...) {
attributes(x) <- NULL
as.integer(x)

}
#' @export
vec_cast.double.my_natural <- function(x, to, ...) {
attributes(x) <- NULL
as.double(x)

}

And we now get the expected combinations.

vec_c(new_natural(1), 10L)
#> [1] 1 10

vec_c(1.5, new_natural(1))
#> [1] 1.5 1.0

howto-faq-coercion-data-frame

FAQ - How to implement ptype2 and cast methods? (Data frames)

16 howto-faq-coercion-data-frame

Description

This guide provides a practical recipe for implementing vec_ptype2() and vec_cast() methods
for coercions of data frame subclasses. Related topics:

• For an overview of the coercion mechanism in vctrs, see ?theory-faq-coercion.

• For an example of implementing coercion methods for simple vectors, see ?howto-faq-coercion.

Coercion of data frames occurs when different data frame classes are combined in some way. The
two main methods of combination are currently row-binding with vec_rbind() and col-binding
with vec_cbind() (which are in turn used by a number of dplyr and tidyr functions). These func-
tions take multiple data frame inputs and automatically coerce them to their common type.

vctrs is generally strict about the kind of automatic coercions that are performed when combining
inputs. In the case of data frames we have decided to be a bit less strict for convenience. Instead of
throwing an incompatible type error, we fall back to a base data frame or a tibble if we don’t know
how to combine two data frame subclasses. It is still a good idea to specify the proper coercion
behaviour for your data frame subclasses as soon as possible.

We will see two examples in this guide. The first example is about a data frame subclass that has
no particular attributes to manage. In the second example, we implement coercion methods for a
tibble subclass that includes potentially incompatible attributes.

Roxygen workflow:
To implement methods for generics, first import the generics in your namespace and redocument:

#' @importFrom vctrs vec_ptype2 vec_cast
NULL

Note that for each batches of methods that you add to your package, you need to export the
methods and redocument immediately, even during development. Otherwise they won’t be in
scope when you run unit tests e.g. with testthat.
Implementing double dispatch methods is very similar to implementing regular S3 methods. In
these examples we are using roxygen2 tags to register the methods, but you can also register the
methods manually in your NAMESPACE file or lazily with s3_register().

Parent methods:
Most of the common type determination should be performed by the parent class. In vctrs, double
dispatch is implemented in such a way that you need to call the methods for the parent class man-
ually. For vec_ptype2() this means you need to call df_ptype2() (for data frame subclasses) or
tib_ptype2() (for tibble subclasses). Similarly, df_cast() and tib_cast() are the workhorses
for vec_cast() methods of subtypes of data.frame and tbl_df. These functions take the union
of the columns in x and y, and ensure shared columns have the same type.
These functions are much less strict than vec_ptype2() and vec_cast() as they accept any
subclass of data frame as input. They always return a data.frame or a tbl_df. You will probably
want to write similar functions for your subclass to avoid repetition in your code. You may want
to export them as well if you are expecting other people to derive from your class.

A data.table example:
This example is the actual implementation of vctrs coercion methods for data.table. This is
a simple example because we don’t have to keep track of attributes for this class or manage
incompatibilities. See the tibble section for a more complicated example.

howto-faq-coercion-data-frame 17

We first create the dt_ptype2() and dt_cast() helpers. They wrap around the parent methods
df_ptype2() and df_cast(), and transform the common type or converted input to a data table.
You may want to export these helpers if you expect other packages to derive from your data frame
class.
These helpers should always return data tables. To this end we use the conversion generic
as.data.table(). Depending on the tools available for the particular class at hand, a constructor
might be appropriate as well.

dt_ptype2 <- function(x, y, ...) {
as.data.table(df_ptype2(x, y, ...))

}
dt_cast <- function(x, to, ...) {
as.data.table(df_cast(x, to, ...))

}

We start with the self-self method:

#' @export
vec_ptype2.data.table.data.table <- function(x, y, ...) {
dt_ptype2(x, y, ...)

}

Between a data frame and a data table, we consider the richer type to be data table. This decision is
not based on the value coverage of each data structures, but on the idea that data tables have richer
behaviour. Since data tables are the richer type, we call dt_type2() from the vec_ptype2()
method. It always returns a data table, no matter the order of arguments:

#' @export
vec_ptype2.data.table.data.frame <- function(x, y, ...) {
dt_ptype2(x, y, ...)

}
#' @export
vec_ptype2.data.frame.data.table <- function(x, y, ...) {
dt_ptype2(x, y, ...)

}

The vec_cast() methods follow the same pattern, but note how the method for coercing to data
frame uses df_cast() rather than dt_cast().
Also, please note that for historical reasons, the order of the classes in the method name is in
reverse order of the arguments in the function signature. The first class represents to, whereas the
second class represents x.

#' @export
vec_cast.data.table.data.table <- function(x, to, ...) {
dt_cast(x, to, ...)

}
#' @export
vec_cast.data.table.data.frame <- function(x, to, ...) {
`x` is a data.frame to be converted to a data.table
dt_cast(x, to, ...)

}

18 howto-faq-coercion-data-frame

#' @export
vec_cast.data.frame.data.table <- function(x, to, ...) {
`x` is a data.table to be converted to a data.frame
df_cast(x, to, ...)

}

With these methods vctrs is now able to combine data tables with data frames:

vec_cbind(data.frame(x = 1:3), data.table(y = "foo"))
#> x y
#> 1: 1 foo
#> 2: 2 foo
#> 3: 3 foo

A tibble example:
In this example we implement coercion methods for a tibble subclass that carries a colour as a
scalar metadata:

User constructor
my_tibble <- function(colour = NULL, ...) {
new_my_tibble(tibble::tibble(...), colour = colour)

}
Developer constructor
new_my_tibble <- function(x, colour = NULL) {
stopifnot(is.data.frame(x))
tibble::new_tibble(
x,
colour = colour,
class = "my_tibble",
nrow = nrow(x)

)
}

df_colour <- function(x) {
if (inherits(x, "my_tibble")) {
attr(x, "colour")

} else {
NULL

}
}

#'@export
print.my_tibble <- function(x, ...) {
cat(sprintf("<%s: %s>\n", class(x)[[1]], df_colour(x)))
cli::cat_line(format(x)[-1])

}

This subclass is very simple. All it does is modify the header.

red <- my_tibble("red", x = 1, y = 1:2)

howto-faq-coercion-data-frame 19

red
#> <my_tibble: red>
#> x y
#> <dbl> <int>
#> 1 1 1
#> 2 1 2

red[2]
#> <my_tibble: red>
#> y
#> <int>
#> 1 1
#> 2 2

green <- my_tibble("green", z = TRUE)
green
#> <my_tibble: green>
#> z
#> <lgl>
#> 1 TRUE

Combinations do not work properly out of the box, instead vctrs falls back to a bare tibble:

vec_rbind(red, tibble::tibble(x = 10:12))
#> # A tibble: 5 x 2
#> x y
#> <dbl> <int>
#> 1 1 1
#> 2 1 2
#> 3 10 NA
#> 4 11 NA
#> 5 12 NA

Instead of falling back to a data frame, we would like to return a <my_tibble> when combined
with a data frame or a tibble. Because this subclass has more metadata than normal data frames
(it has a colour), it is a supertype of tibble and data frame, i.e. it is the richer type. This is similar
to how a grouped tibble is a more general type than a tibble or a data frame. Conceptually, the
latter are pinned to a single constant group.
The coercion methods for data frames operate in two steps:

• They check for compatible subclass attributes. In our case the tibble colour has to be the
same, or be undefined.

• They call their parent methods, in this case tib_ptype2() and tib_cast() because we
have a subclass of tibble. This eventually calls the data frame methods df_ptype2() and
tib_ptype2() which match the columns and their types.

This process should usually be wrapped in two functions to avoid repetition. Consider exporting
these if you expect your class to be derived by other subclasses.
We first implement a helper to determine if two data frames have compatible colours. We use the
df_colour() accessor which returns NULL when the data frame colour is undefined.

20 howto-faq-coercion-data-frame

has_compatible_colours <- function(x, y) {
x_colour <- df_colour(x) %||% df_colour(y)
y_colour <- df_colour(y) %||% x_colour
identical(x_colour, y_colour)

}

Next we implement the coercion helpers. If the colours are not compatible, we call stop_incompatible_cast()
or stop_incompatible_type(). These strict coercion semantics are justified because in this
class colour is a data attribute. If it were a non essential detail attribute, like the timezone in a
datetime, we would just standardise it to the value of the left-hand side.
In simpler cases (like the data.table example), these methods do not need to take the arguments
suffixed in _arg. Here we do need to take these arguments so we can pass them to the stop_
functions when we detect an incompatibility. They also should be passed to the parent methods.

#' @export
my_tib_cast <- function(x, to, ..., x_arg = "", to_arg = "") {
out <- tib_cast(x, to, ..., x_arg = x_arg, to_arg = to_arg)

if (!has_compatible_colours(x, to)) {
stop_incompatible_cast(
x,
to,
x_arg = x_arg,
to_arg = to_arg,
details = "Can't combine colours."

)
}

colour <- df_colour(x) %||% df_colour(to)
new_my_tibble(out, colour = colour)

}
#' @export
my_tib_ptype2 <- function(x, y, ..., x_arg = "", y_arg = "") {
out <- tib_ptype2(x, y, ..., x_arg = x_arg, y_arg = y_arg)

if (!has_compatible_colours(x, y)) {
stop_incompatible_type(
x,
y,
x_arg = x_arg,
y_arg = y_arg,
details = "Can't combine colours."

)
}

colour <- df_colour(x) %||% df_colour(y)
new_my_tibble(out, colour = colour)

}

Let’s now implement the coercion methods, starting with the self-self methods.

howto-faq-coercion-data-frame 21

#' @export
vec_ptype2.my_tibble.my_tibble <- function(x, y, ...) {
my_tib_ptype2(x, y, ...)

}
#' @export
vec_cast.my_tibble.my_tibble <- function(x, to, ...) {
my_tib_cast(x, to, ...)

}

We can now combine compatible instances of our class!

vec_rbind(red, red)
#> <my_tibble: red>
#> x y
#> <dbl> <int>
#> 1 1 1
#> 2 1 2
#> 3 1 1
#> 4 1 2

vec_rbind(green, green)
#> <my_tibble: green>
#> z
#> <lgl>
#> 1 TRUE
#> 2 TRUE

vec_rbind(green, red)
#> Error in `my_tib_ptype2()`:
#> ! Can't combine `..1` <my_tibble> and `..2` <my_tibble>.
#> Can't combine colours.

The methods for combining our class with tibbles follow the same pattern. For ptype2 we return
our class in both cases because it is the richer type:

#' @export
vec_ptype2.my_tibble.tbl_df <- function(x, y, ...) {
my_tib_ptype2(x, y, ...)

}
#' @export
vec_ptype2.tbl_df.my_tibble <- function(x, y, ...) {
my_tib_ptype2(x, y, ...)

}

For cast are careful about returning a tibble when casting to a tibble. Note the call to vctrs::tib_cast():

#' @export
vec_cast.my_tibble.tbl_df <- function(x, to, ...) {
my_tib_cast(x, to, ...)

}
#' @export

22 howto-faq-coercion-data-frame

vec_cast.tbl_df.my_tibble <- function(x, to, ...) {
tib_cast(x, to, ...)

}

From this point, we get correct combinations with tibbles:

vec_rbind(red, tibble::tibble(x = 10:12))
#> <my_tibble: red>
#> x y
#> <dbl> <int>
#> 1 1 1
#> 2 1 2
#> 3 10 NA
#> 4 11 NA
#> 5 12 NA

However we are not done yet. Because the coercion hierarchy is different from the class hierarchy,
there is no inheritance of coercion methods. We’re not getting correct behaviour for data frames
yet because we haven’t explicitly specified the methods for this class:

vec_rbind(red, data.frame(x = 10:12))
#> # A tibble: 5 x 2
#> x y
#> <dbl> <int>
#> 1 1 1
#> 2 1 2
#> 3 10 NA
#> 4 11 NA
#> 5 12 NA

Let’s finish up the boiler plate:

#' @export
vec_ptype2.my_tibble.data.frame <- function(x, y, ...) {
my_tib_ptype2(x, y, ...)

}
#' @export
vec_ptype2.data.frame.my_tibble <- function(x, y, ...) {
my_tib_ptype2(x, y, ...)

}

#' @export
vec_cast.my_tibble.data.frame <- function(x, to, ...) {
my_tib_cast(x, to, ...)

}
#' @export
vec_cast.data.frame.my_tibble <- function(x, to, ...) {
df_cast(x, to, ...)

}

This completes the implementation:

howto-faq-fix-scalar-type-error 23

vec_rbind(red, data.frame(x = 10:12))
#> <my_tibble: red>
#> x y
#> <dbl> <int>
#> 1 1 1
#> 2 1 2
#> 3 10 NA
#> 4 11 NA
#> 5 12 NA

howto-faq-fix-scalar-type-error

FAQ - Why isn’t my class treated as a vector?

Description

The tidyverse is a bit stricter than base R regarding what kind of objects are considered as vectors
(see the user FAQ about this topic). Sometimes vctrs won’t treat your class as a vector when it
should.

Why isn’t my list class considered a vector?:
By default, S3 lists are not considered to be vectors by vctrs:

my_list <- structure(list(), class = "my_class")

vctrs::vec_is(my_list)
#> [1] FALSE

To be treated as a vector, the class must either inherit from "list" explicitly:

my_explicit_list <- structure(list(), class = c("my_class", "list"))
vctrs::vec_is(my_explicit_list)
#> [1] TRUE

Or it should implement a vec_proxy() method that returns its input if explicit inheritance is not
possible or troublesome:

#' @export
vec_proxy.my_class <- function(x, ...) x

vctrs::vec_is(my_list)
#> [1] FALSE

Note that explicit inheritance is the preferred way because this makes it possible for your class to
dispatch on list methods of S3 generics:

my_generic <- function(x) UseMethod("my_generic")
my_generic.list <- function(x) "dispatched!"

24 internal-faq-matches-algorithm

my_generic(my_list)
#> Error in UseMethod("my_generic"): no applicable method for 'my_generic' applied to an object of class "my_class"

my_generic(my_explicit_list)
#> [1] "dispatched!"

Why isn’t my data frame class considered a vector?:
The most likely explanation is that the data frame has not been properly constructed.
However, if you get an “Input must be a vector” error with a data frame subclass, it probably
means that the data frame has not been properly constructed. The main cause of these errors are
data frames whose base class is not "data.frame":

my_df <- data.frame(x = 1)
class(my_df) <- c("data.frame", "my_class")

vctrs::obj_check_vector(my_df)
#> Error:
#> ! `my_df` must be a vector, not a <data.frame/my_class> object.

This is problematic as many tidyverse functions won’t work properly:

dplyr::slice(my_df, 1)
#> Error in `vec_slice()`:
#> ! `x` must be a vector, not a <data.frame/my_class> object.

It is generally not appropriate to declare your class to be a superclass of another class. We gen-
erally consider this undefined behaviour (UB). To fix these errors, you can simply change the
construction of your data frame class so that "data.frame" is a base class, i.e. it should come last
in the class vector:

class(my_df) <- c("my_class", "data.frame")

vctrs::obj_check_vector(my_df)

dplyr::slice(my_df, 1)
#> x
#> 1 1

internal-faq-matches-algorithm

Internal FAQ - Implementation of vec_locate_matches()

Description

vec_locate_matches() is similar to vec_match(), but detects all matches by default, and can
match on conditions other than equality (like >= and <). There are also various other arguments to
limit or adjust exactly which kinds of matches are returned. Here is an example:

internal-faq-matches-algorithm 25

x <- c("a", "b", "a", "c", "d")
y <- c("d", "b", "a", "d", "a", "e")

For each value of `x`, find all matches in `y`
- The "c" in `x` doesn't have a match, so it gets an NA location by default
- The "e" in `y` isn't matched by anything in `x`, so it is dropped by default
vec_locate_matches(x, y)
#> needles haystack
#> 1 1 3
#> 2 1 5
#> 3 2 2
#> 4 3 3
#> 5 3 5
#> 6 4 NA
#> 7 5 1
#> 8 5 4

Algorithm description

Overview and ==:
The simplest (approximate) way to think about the algorithm that df_locate_matches_recurse()
uses is that it sorts both inputs, and then starts at the midpoint in needles and uses a binary search
to find each needle in haystack. Since there might be multiple of the same needle, we find the
location of the lower and upper duplicate of that needle to handle all duplicates of that needle at
once. Similarly, if there are duplicates of a matching haystack value, we find the lower and upper
duplicates of the match.
If the condition is ==, that is pretty much all we have to do. For each needle, we then record 3
things: the location of the needle, the location of the lower match in the haystack, and the match
size (i.e. loc_upper_match - loc_lower_match + 1). This later gets expanded in expand_compact_indices()
into the actual output.
After recording the matches for a single needle, we perform the same procedure on the LHS and
RHS of that needle (remember we started on the midpoint needle). i.e. from [1, loc_needle-1]
and [loc_needle+1, size_needles], again taking the midpoint of those two ranges, finding
their respective needle in the haystack, recording matches, and continuing on to the next needle.
This iteration proceeds until we run out of needles.
When we have a data frame with multiple columns, we add a layer of recursion to this. For the
first column, we find the locations of the lower/upper duplicate of the current needle, and we
find the locations of the lower/upper matches in the haystack. If we are on the final column in
the data frame, we record the matches, otherwise we pass this information on to another call to
df_locate_matches_recurse(), bumping the column index and using these refined lower/upper
bounds as the starting bounds for the next column.
I think an example would be useful here, so below I step through this process for a few iterations:

these are sorted already for simplicity
needles <- data_frame(x = c(1, 1, 2, 2, 2, 3), y = c(1, 2, 3, 4, 5, 3))
haystack <- data_frame(x = c(1, 1, 2, 2, 3), y = c(2, 3, 4, 4, 1))

needles

26 internal-faq-matches-algorithm

#> x y
#> 1 1 1
#> 2 1 2
#> 3 2 3
#> 4 2 4
#> 5 2 5
#> 6 3 3

haystack
#> x y
#> 1 1 2
#> 2 1 3
#> 3 2 4
#> 4 2 4
#> 5 3 1

Column 1, iteration 1

start at midpoint in needles
this corresponds to x==2
loc_mid_needles <- 3L

finding all x==2 values in needles gives us:
loc_lower_duplicate_needles <- 3L
loc_upper_duplicate_needles <- 5L

finding matches in haystack give us:
loc_lower_match_haystack <- 3L
loc_upper_match_haystack <- 4L

compute LHS/RHS bounds for next needle
lhs_loc_lower_bound_needles <- 1L # original lower bound
lhs_loc_upper_bound_needles <- 2L # lower_duplicate-1

rhs_loc_lower_bound_needles <- 6L # upper_duplicate+1
rhs_loc_upper_bound_needles <- 6L # original upper bound

We still have a 2nd column to check. So recurse and pass on the current
duplicate and match bounds to start the 2nd column with.

Column 2, iteration 1

midpoint of [3, 5]
value y==4
loc_mid_needles <- 4L

loc_lower_duplicate_needles <- 4L
loc_upper_duplicate_needles <- 4L

internal-faq-matches-algorithm 27

loc_lower_match_haystack <- 3L
loc_upper_match_haystack <- 4L

last column, so record matches
- this was location 4 in needles
- lower match in haystack is at loc 3
- match size is 2

Now handle LHS and RHS of needle midpoint
lhs_loc_lower_bound_needles <- 3L # original lower bound
lhs_loc_upper_bound_needles <- 3L # lower_duplicate-1

rhs_loc_lower_bound_needles <- 5L # upper_duplicate+1
rhs_loc_upper_bound_needles <- 5L # original upper bound

Column 2, iteration 2 (using LHS bounds)

midpoint of [3,3]
value of y==3
loc_mid_needles <- 3L

loc_lower_duplicate_needles <- 3L
loc_upper_duplicate_needles <- 3L

no match! no y==3 in haystack for x==2
lower-match will always end up > upper-match in this case
loc_lower_match_haystack <- 3L
loc_upper_match_haystack <- 2L

no LHS or RHS needle values to do, so we are done here

Column 2, iteration 3 (using RHS bounds)

same as above, range of [5,5], value of y==5, which has no match in haystack

Column 1, iteration 2 (LHS of first x needle)

Now we are done with the x needles from [3,5], so move on to the LHS and RHS
of that. Here we would do the LHS:

midpoint of [1,2]
loc_mid_needles <- 1L

...

Column 1, iteration 3 (RHS of first x needle)

28 internal-faq-matches-algorithm

midpoint of [6,6]
loc_mid_needles <- 6L

...

In the real code, rather than comparing the double values of the columns directly, we replace each
column with pseudo "joint ranks" computed between the i-th column of needles and the i-th col-
umn of haystack. It is approximately like doing vec_rank(vec_c(needles$x, haystack$x),
type = "dense"), then splitting the resulting ranks back up into their corresponding needle/haystack
columns. This keeps the recursion code simpler, because we only have to worry about comparing
integers.

Non-equi conditions and containers:
At this point we can talk about non-equi conditions like < or >=. The general idea is pretty
simple, and just builds on the above algorithm. For example, start with the x column from nee-
dles/haystack above:

needles$x
#> [1] 1 1 2 2 2 3

haystack$x
#> [1] 1 1 2 2 3

If we used a condition of <=, then we’d do everything the same as before:

• Midpoint in needles is location 3, value x==2

• Find lower/upper duplicates in needles, giving locations [3, 5]

• Find lower/upper exact match in haystack, giving locations [3, 4]

At this point, we need to "adjust" the haystack match bounds to account for the condition. Since
haystack is ordered, our "rule" for <= is to keep the lower match location the same, but extend
the upper match location to the upper bound, so we end up with [3, 5]. We know we can extend
the upper match location because every haystack value after the exact match should be less than
the needle. Then we just record the matches and continue on normally.
This approach is really nice, because we only have to exactly match the needle in haystack. We
don’t have to compare each needle against every value in haystack, which would take a massive
amount of time.
However, it gets slightly more complex with data frames with multiple columns. Let’s go back
to our original needles and haystack data frames and apply the condition <= to each column.
Here is another worked example, which shows a case where our "rule" falls apart on the second
column.

needles
#> x y
#> 1 1 1
#> 2 1 2
#> 3 2 3
#> 4 2 4
#> 5 2 5
#> 6 3 3

internal-faq-matches-algorithm 29

haystack
#> x y
#> 1 1 2
#> 2 1 3
#> 3 2 4
#> 4 2 4
#> 5 3 1

`condition = c("<=", "<=")`

Column 1, iteration 1

x == 2
loc_mid_needles <- 3L

loc_lower_duplicate_needles <- 3L
loc_upper_duplicate_needles <- 5L

finding exact matches in haystack give us:
loc_lower_match_haystack <- 3L
loc_upper_match_haystack <- 4L

because haystack is ordered we know we can expand the upper bound automatically
to include everything past the match. i.e. needle of x==2 must be less than
the haystack value at loc 5, which we can check by seeing that it is x==3.
loc_lower_match_haystack <- 3L
loc_upper_match_haystack <- 5L

Column 2, iteration 1

needles range of [3, 5]
y == 4
loc_mid_needles <- 4L

loc_lower_duplicate_needles <- 4L
loc_upper_duplicate_needles <- 4L

finding exact matches in haystack give us:
loc_lower_match_haystack <- 3L
loc_upper_match_haystack <- 4L

lets try using our rule, which tells us we should be able to extend the upper
bound:
loc_lower_match_haystack <- 3L
loc_upper_match_haystack <- 5L

but the haystack value of y at location 5 is y==1, which is not less than y==4
in the needles! looks like our rule failed us.

30 internal-faq-matches-algorithm

If you read through the above example, you’ll see that the rule didn’t work here. The problem
is that while haystack is ordered (by vec_order()s standards), each column isn’t ordered inde-
pendently of the others. Instead, each column is ordered within the "group" created by previous
columns. Concretely, haystack here has an ordered x column, but if you look at haystack$y by
itself, it isn’t ordered (because of that 1 at the end). That is what causes the rule to fail.

haystack
#> x y
#> 1 1 2
#> 2 1 3
#> 3 2 4
#> 4 2 4
#> 5 3 1

To fix this, we need to create haystack "containers" where the values within each container are all
totally ordered. For haystack that would create 2 containers and look like:

haystack[1:4,]
#> # A tibble: 4 × 2
#> x y
#> <dbl> <dbl>
#> 1 1 2
#> 2 1 3
#> 3 2 4
#> 4 2 4

haystack[5,]
#> # A tibble: 1 × 2
#> x y
#> <dbl> <dbl>
#> 1 3 1

This is essentially what computing_nesting_container_ids() does. You can actually see these
ids with the helper, compute_nesting_container_info():

haystack2 <- haystack

we really pass along the integer ranks, but in this case that is equivalent
to converting our double columns to integers
haystack2$x <- as.integer(haystack2$x)
haystack2$y <- as.integer(haystack2$y)

info <- compute_nesting_container_info(haystack2, condition = c("<=", "<="))

the ids are in the second slot.
container ids break haystack into [1, 4] and [5, 5].
info[[2]]
#> [1] 0 0 0 0 1

So the idea is that for each needle, we look in each haystack container and find all the matches,
then we aggregate all of the matches once at the end. df_locate_matches_with_containers()
has the job of iterating over the containers.

internal-faq-ptype2-identity 31

Computing totally ordered containers can be expensive, but luckily it doesn’t happen very often
in normal usage.

• If there are all == conditions, we don’t need containers (i.e. any equi join)
• If there is only 1 non-equi condition and no conditions after it, we don’t need containers (i.e.

most rolling joins)
• Otherwise the typical case where we need containers is if we have something like date >= lower, date <= upper.

Even so, the computation cost generally scales with the number of columns in haystack you
compute containers with (here 2), and it only really slows down around 4 columns or so,
which I haven’t ever seen a real life example of.

internal-faq-ptype2-identity

Internal FAQ - vec_ptype2(), NULL, and unspecified vectors

Description

Promotion monoid:
Promotions (i.e. automatic coercions) should always transform inputs to their richer type to avoid
losing values of precision. vec_ptype2() returns the richer type of two vectors, or throws an
incompatible type error if none of the two vector types include the other. For example, the richer
type of integer and double is the latter because double covers a larger range of values than integer.
vec_ptype2() is a monoid over vectors, which in practical terms means that it is a well behaved
operation for reduction. Reduction is an important operation for promotions because that is how
the richer type of multiple elements is computed. As a monoid, vec_ptype2() needs an identity
element, i.e. a value that doesn’t change the result of the reduction. vctrs has two identity values,
NULL and unspecified vectors.

The NULL identity:
As an identity element that shouldn’t influence the determination of the common type of a set of
vectors, NULL is promoted to any type:

vec_ptype2(NULL, "")
#> character(0)
vec_ptype2(1L, NULL)
#> integer(0)

The common type of NULL and NULL is the identity NULL:

vec_ptype2(NULL, NULL)
#> NULL

This way the result of vec_ptype2(NULL, NULL) does not influence subsequent promotions:

vec_ptype2(
vec_ptype2(NULL, NULL),
""

)
#> character(0)

https://en.wikipedia.org/wiki/Monoid
https://purrr.tidyverse.org/reference/reduce.html

32 internal-faq-ptype2-identity

Unspecified vectors:
In the vctrs coercion system, logical vectors of missing values are also automatically promoted to
the type of any other vector, just like NULL. We call these vectors unspecified. The special coercion
semantics of unspecified vectors serve two purposes:

1. It makes it possible to assign vectors of NA inside any type of vectors, even when they are not
coercible with logical:

x <- letters[1:5]
vec_assign(x, 1:2, c(NA, NA))
#> [1] NA NA "c" "d" "e"

2. We can’t put NULL in a data frame, so we need an identity element that behaves more like a
vector. Logical vectors of NA seem a natural fit for this.

Unspecified vectors are thus promoted to any other type, just like NULL:

vec_ptype2(NA, "")
#> character(0)
vec_ptype2(1L, c(NA, NA))
#> integer(0)

Finalising common types:
vctrs has an internal vector type of class vctrs_unspecified. Users normally don’t see such
vectors in the wild, but they do come up when taking the common type of an unspecified vector
with another identity value:

vec_ptype2(NA, NA)
#> <unspecified> [0]
vec_ptype2(NA, NULL)
#> <unspecified> [0]
vec_ptype2(NULL, NA)
#> <unspecified> [0]

We can’t return NA here because vec_ptype2() normally returns empty vectors. We also can’t
return NULL because unspecified vectors need to be recognised as logical vectors if they haven’t
been promoted at the end of the reduction.

vec_ptype_finalise(vec_ptype2(NULL, NA))
#> logical(0)

See the output of vec_ptype_common() which performs the reduction and finalises the type, ready
to be used by the caller:

vec_ptype_common(NULL, NULL)
#> NULL
vec_ptype_common(NA, NULL)
#> logical(0)

Note that partial types in vctrs make use of the same mechanism. They are finalised with
vec_ptype_finalise().

list_drop_empty 33

list_drop_empty Drop empty elements from a list

Description

list_drop_empty() removes empty elements from a list. This includes NULL elements along with
empty vectors, like integer(0). This is equivalent to, but faster than, vec_slice(x, list_sizes(x)
!= 0L).

Usage

list_drop_empty(x)

Arguments

x A list.

Dependencies

• vec_slice()

Examples

x <- list(1, NULL, integer(), 2)
list_drop_empty(x)

list_of list_of S3 class for homogenous lists

Description

A list_of object is a list where each element has the same type. Modifying the list with $, [, and
[[preserves the constraint by coercing all input items.

Usage

list_of(..., .ptype = NULL)

as_list_of(x, ...)

is_list_of(x)

S3 method for class 'vctrs_list_of'
vec_ptype2(x, y, ..., x_arg = "", y_arg = "")

S3 method for class 'vctrs_list_of'
vec_cast(x, to, ...)

34 missing

Arguments

... Vectors to coerce.

.ptype If NULL, the default, the output type is determined by computing the common
type across all elements of
Alternatively, you can supply .ptype to give the output known type. If getOption("vctrs.no_guessing")
is TRUE you must supply this value: this is a convenient way to make production
code demand fixed types.

x For as_list_of(), a vector to be coerced to list_of.
y, to Arguments to vec_ptype2() and vec_cast().
x_arg, y_arg Argument names for x and y. These are used in error messages to inform the user

about the locations of incompatible types (see stop_incompatible_type()).

Details

Unlike regular lists, setting a list element to NULL using [[does not remove it.

Examples

x <- list_of(1:3, 5:6, 10:15)
if (requireNamespace("tibble", quietly = TRUE)) {

tibble::tibble(x = x)
}

vec_c(list_of(1, 2), list_of(FALSE, TRUE))

missing Missing values

Description

• vec_detect_missing() returns a logical vector the same size as x. For each element of x, it
returns TRUE if the element is missing, and FALSE otherwise.

• vec_any_missing() returns a single TRUE or FALSE depending on whether or not x has any
missing values.

Differences with is.na():
Data frame rows are only considered missing if every element in the row is missing. Similarly,
record vector elements are only considered missing if every field in the record is missing. Put
another way, rows with any missing values are considered incomplete, but only rows with all
missing values are considered missing.
List elements are only considered missing if they are NULL.

Usage

vec_detect_missing(x)

vec_any_missing(x)

name_spec 35

Arguments

x A vector

Value

• vec_detect_missing() returns a logical vector the same size as x.

• vec_any_missing() returns a single TRUE or FALSE.

Dependencies

• vec_proxy_equal()

See Also

vec_detect_complete()

Examples

x <- c(1, 2, NA, 4, NA)

vec_detect_missing(x)
vec_any_missing(x)

Data frames are iterated over rowwise, and only report a row as missing
if every element of that row is missing. If a row is only partially
missing, it is said to be incomplete, but not missing.
y <- c("a", "b", NA, "d", "e")
df <- data_frame(x = x, y = y)

df$missing <- vec_detect_missing(df)
df$incomplete <- !vec_detect_complete(df)
df

name_spec Name specifications

Description

A name specification describes how to combine an inner and outer names. This sort of name
combination arises when concatenating vectors or flattening lists. There are two possible cases:

• Named vector:

vec_c(outer = c(inner1 = 1, inner2 = 2))

• Unnamed vector:

vec_c(outer = 1:2)

36 name_spec

In r-lib and tidyverse packages, these cases are errors by default, because there’s no behaviour that
works well for every case. Instead, you can provide a name specification that describes how to
combine the inner and outer names of inputs. Name specifications can refer to:

• outer: The external name recycled to the size of the input vector.

• inner: Either the names of the input vector, or a sequence of integer from 1 to the size of the
vector if it is unnamed.

Arguments
name_spec, .name_spec

A name specification for combining inner and outer names. This is relevant
for inputs passed with a name, when these inputs are themselves named, like
outer = c(inner = 1), or when they have length greater than 1: outer = 1:2.
By default, these cases trigger an error. You can resolve the error by providing a
specification that describes how to combine the names or the indices of the inner
vector with the name of the input. This specification can be:

• A function of two arguments. The outer name is passed as a string to the
first argument, and the inner names or positions are passed as second argu-
ment.

• An anonymous function as a purrr-style formula.
• A glue specification of the form "{outer}_{inner}".
• An rlang::zap() object, in which case both outer and inner names are

ignored and the result is unnamed.

See the name specification topic.

Examples

By default, named inputs must be length 1:
vec_c(name = 1) # ok
try(vec_c(name = 1:3)) # bad

They also can't have internal names, even if scalar:
try(vec_c(name = c(internal = 1))) # bad

Pass a name specification to work around this. A specification
can be a glue string referring to `outer` and `inner`:
vec_c(name = 1:3, other = 4:5, .name_spec = "{outer}")
vec_c(name = 1:3, other = 4:5, .name_spec = "{outer}_{inner}")

They can also be functions:
my_spec <- function(outer, inner) paste(outer, inner, sep = "_")
vec_c(name = 1:3, other = 4:5, .name_spec = my_spec)

Or purrr-style formulas for anonymous functions:
vec_c(name = 1:3, other = 4:5, .name_spec = ~ paste0(.x, .y))

new_data_frame 37

new_data_frame Assemble attributes for data frame construction

Description

new_data_frame() constructs a new data frame from an existing list. It is meant to be performant,
and does not check the inputs for correctness in any way. It is only safe to use after a call to
df_list(), which collects and validates the columns used to construct the data frame.

Usage

new_data_frame(x = list(), n = NULL, ..., class = NULL)

Arguments

x A named list of equal-length vectors. The lengths are not checked; it is respon-
sibility of the caller to make sure they are equal.

n Number of rows. If NULL, will be computed from the length of the first element
of x.

..., class Additional arguments for creating subclasses.
The following attributes have special behavior:

• "names" is preferred if provided, overriding existing names in x.
• "row.names" is preferred if provided, overriding both n and the size im-

plied by x.

See Also

df_list() for a way to safely construct a data frame’s underlying data structure from individual
columns. This can be used to create a named list for further use by new_data_frame().

Examples

new_data_frame(list(x = 1:10, y = 10:1))

obj_is_list List checks

Description

• obj_is_list() tests if x is considered a list in the vctrs sense. It returns TRUE if:
– x is a bare list with no class.
– x is a list explicitly inheriting from "list".

• list_all_vectors() takes a list and returns TRUE if all elements of that list are vectors.
• list_all_size() takes a list and returns TRUE if all elements of that list have the same size.
• obj_check_list(), list_check_all_vectors(), and list_check_all_size() use the above

functions, but throw a standardized and informative error if they return FALSE.

38 obj_is_list

Usage

obj_is_list(x)

obj_check_list(x, ..., arg = caller_arg(x), call = caller_env())

list_all_vectors(x)

list_check_all_vectors(x, ..., arg = caller_arg(x), call = caller_env())

list_all_size(x, size)

list_check_all_size(x, size, ..., arg = caller_arg(x), call = caller_env())

Arguments

x For vec_*() functions, an object. For list_*() functions, a list.

... These dots are for future extensions and must be empty.

arg An argument name as a string. This argument will be mentioned in error mes-
sages as the input that is at the origin of a problem.

call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort() for more information.

size The size to check each element for.

Details

Notably, data frames and S3 record style classes like POSIXlt are not considered lists.

See Also

list_sizes()

Examples

obj_is_list(list())
obj_is_list(list_of(1))
obj_is_list(data.frame())

list_all_vectors(list(1, mtcars))
list_all_vectors(list(1, environment()))

list_all_size(list(1:2, 2:3), 2)
list_all_size(list(1:2, 2:4), 2)

`list_`-prefixed functions assume a list:
try(list_all_vectors(environment()))

reference-faq-compatibility 39

reference-faq-compatibility

FAQ - Is my class compatible with vctrs?

Description

vctrs provides a framework for working with vector classes in a generic way. However, it imple-
ments several compatibility fallbacks to base R methods. In this reference you will find how vctrs
tries to be compatible with your vector class, and what base methods you need to implement for
compatibility.

If you’re starting from scratch, we think you’ll find it easier to start using new_vctr() as doc-
umented in vignette("s3-vector"). This guide is aimed for developers with existing vector
classes.

Aggregate operations with fallbacks:
All vctrs operations are based on four primitive generics described in the next section. However
there are many higher level operations. The most important ones implement fallbacks to base
generics for maximum compatibility with existing classes.

• vec_slice() falls back to the base [generic if no vec_proxy() method is implemented.
This way foreign classes that do not implement vec_restore() can restore attributes based
on the new subsetted contents.

• vec_c() and vec_rbind() now fall back to base::c() if the inputs have a common parent
class with a c() method (only if they have no self-to-self vec_ptype2() method).
vctrs works hard to make your c() method success in various situations (with NULL and NA
inputs, even as first input which would normally prevent dispatch to your method). The main
downside compared to using vctrs primitives is that you can’t combine vectors of different
classes since there is no extensible mechanism of coercion in c(), and it is less efficient in
some cases.

The vctrs primitives:
Most functions in vctrs are aggregate operations: they call other vctrs functions which themselves
call other vctrs functions. The dependencies of a vctrs functions are listed in the Dependencies
section of its documentation page. Take a look at vec_count() for an example.
These dependencies form a tree whose leaves are the four vctrs primitives. Here is the diagram
for vec_count():

40 runs

The coercion generics:
The coercion mechanism in vctrs is based on two generics:

• vec_ptype2()

• vec_cast()

See the theory overview.
Two objects with the same class and the same attributes are always considered compatible by
ptype2 and cast. If the attributes or classes differ, they throw an incompatible type error.
Coercion errors are the main source of incompatibility with vctrs. See the howto guide if you
need to implement methods for these generics.

The proxy and restoration generics:
• vec_proxy()

• vec_restore()

These generics are essential for vctrs but mostly optional. vec_proxy() defaults to an identity
function and you normally don’t need to implement it. The proxy a vector must be one of the
atomic vector types, a list, or a data frame. By default, S3 lists that do not inherit from "list"
do not have an identity proxy. In that case, you need to explicitly implement vec_proxy() or
make your class inherit from list.

runs Runs

Description

• vec_identify_runs() returns a vector of identifiers for the elements of x that indicate which
run of repeated values they fall in. The number of runs is also returned as an attribute, n.

• vec_run_sizes() returns an integer vector corresponding to the size of each run. This is
identical to the times column from vec_unrep(), but is faster if you don’t need the run keys.

• vec_unrep() is a generalized base::rle(). It is documented alongside the "repeat" func-
tions of vec_rep() and vec_rep_each(); look there for more information.

Usage

vec_identify_runs(x)

vec_run_sizes(x)

Arguments

x A vector.

Details

Unlike base::rle(), adjacent missing values are considered identical when constructing runs. For
example, vec_identify_runs(c(NA, NA)) will return c(1, 1), not c(1, 2).

theory-faq-coercion 41

Value

• For vec_identify_runs(), an integer vector with the same size as x. A scalar integer at-
tribute, n, is attached.

• For vec_run_sizes(), an integer vector with size equal to the number of runs in x.

See Also

vec_unrep() for a generalized base::rle().

Examples

x <- c("a", "z", "z", "c", "a", "a")

vec_identify_runs(x)
vec_run_sizes(x)
vec_unrep(x)

y <- c(1, 1, 1, 2, 2, 3)

With multiple columns, the runs are constructed rowwise
df <- data_frame(

x = x,
y = y

)

vec_identify_runs(df)
vec_run_sizes(df)
vec_unrep(df)

theory-faq-coercion FAQ - How does coercion work in vctrs?

Description

This is an overview of the usage of vec_ptype2() and vec_cast() and their role in the vctrs
coercion mechanism. Related topics:

• For an example of implementing coercion methods for simple vectors, see ?howto-faq-coercion.

• For an example of implementing coercion methods for data frame subclasses, see ?howto-faq-coercion-data-frame.

• For a tutorial about implementing vctrs classes from scratch, see vignette("s3-vector").

Combination mechanism in vctrs:
The coercion system in vctrs is designed to make combination of multiple inputs consistent and
extensible. Combinations occur in many places, such as row-binding, joins, subset-assignment,
or grouped summary functions that use the split-apply-combine strategy. For example:

42 theory-faq-coercion

vec_c(TRUE, 1)
#> [1] 1 1

vec_c("a", 1)
#> Error in `vec_c()`:
#> ! Can't combine `..1` <character> and `..2` <double>.

vec_rbind(
data.frame(x = TRUE),
data.frame(x = 1, y = 2)

)
#> x y
#> 1 1 NA
#> 2 1 2

vec_rbind(
data.frame(x = "a"),
data.frame(x = 1, y = 2)

)
#> Error in `vec_rbind()`:
#> ! Can't combine `..1$x` <character> and `..2$x` <double>.

One major goal of vctrs is to provide a central place for implementing the coercion methods
that make generic combinations possible. The two relevant generics are vec_ptype2() and
vec_cast(). They both take two arguments and perform double dispatch, meaning that a method
is selected based on the classes of both inputs.
The general mechanism for combining multiple inputs is:

1. Find the common type of a set of inputs by reducing (as in base::Reduce() or purrr::reduce())
the vec_ptype2() binary function over the set.

2. Convert all inputs to the common type with vec_cast().
3. Initialise the output vector as an instance of this common type with vec_init().
4. Fill the output vector with the elements of the inputs using vec_assign().

The last two steps may require vec_proxy() and vec_restore() implementations, unless the
attributes of your class are constant and do not depend on the contents of the vector. We focus
here on the first two steps, which require vec_ptype2() and vec_cast() implementations.

vec_ptype2():
Methods for vec_ptype2() are passed two prototypes, i.e. two inputs emptied of their elements.
They implement two behaviours:

• If the types of their inputs are compatible, indicate which of them is the richer type by return-
ing it. If the types are of equal resolution, return any of the two.

• Throw an error with stop_incompatible_type() when it can be determined from the at-
tributes that the types of the inputs are not compatible.

Type compatibility:
A type is compatible with another type if the values it represents are a subset or a superset of the
values of the other type. The notion of “value” is to be interpreted at a high level, in particular it
is not the same as the memory representation. For example, factors are represented in memory
with integers but their values are more related to character vectors than to round numbers:

theory-faq-coercion 43

Two factors are compatible
vec_ptype2(factor("a"), factor("b"))
#> factor()
#> Levels: a b

Factors are compatible with a character
vec_ptype2(factor("a"), "b")
#> character(0)

But they are incompatible with integers
vec_ptype2(factor("a"), 1L)
#> Error:
#> ! Can't combine `factor("a")` <factor<4d52a>> and `1L` <integer>.

Richness of type:
Richness of type is not a very precise notion. It can be about richer data (for instance a double
vector covers more values than an integer vector), richer behaviour (a data.table has richer
behaviour than a data.frame), or both. If you have trouble determining which one of the two
types is richer, it probably means they shouldn’t be automatically coercible.
Let’s look again at what happens when we combine a factor and a character:

vec_ptype2(factor("a"), "b")
#> character(0)

The ptype2 method for <character> and <factor<"a">> returns <character> because the
former is a richer type. The factor can only contain "a" strings, whereas the character can
contain any strings. In this sense, factors are a subset of character.
Note that another valid behaviour would be to throw an incompatible type error. This is what a
strict factor implementation would do. We have decided to be laxer in vctrs because it is easy
to inadvertently create factors instead of character vectors, especially with older versions of R
where stringsAsFactors is still true by default.

Consistency and symmetry on permutation:
Each ptype2 method should strive to have exactly the same behaviour when the inputs are per-
muted. This is not always possible, for example factor levels are aggregated in order:

vec_ptype2(factor(c("a", "c")), factor("b"))
#> factor()
#> Levels: a c b

vec_ptype2(factor("b"), factor(c("a", "c")))
#> factor()
#> Levels: b a c

In any case, permuting the input should not return a fundamentally different type or introduce
an incompatible type error.

Coercion hierarchy:
The classes that you can coerce together form a coercion (or subtyping) hierarchy. Below is a
schema of the hierarchy for the base types like integer and factor. In this diagram the directions
of the arrows express which type is richer. They flow from the bottom (more constrained types)
to the top (richer types).

44 theory-faq-coercion

A coercion hierarchy is distinct from the structural hierarchy implied by memory types and
classes. For instance, in a structural hierarchy, factors are built on top of integers. But in the
coercion hierarchy they are more related to character vectors. Similarly, subclasses are not
necessarily coercible with their superclasses because the coercion and structural hierarchies are
separate.

Implementing a coercion hierarchy:
As a class implementor, you have two options. The simplest is to create an entirely separate
hierarchy. The date and date-time classes are an example of an S3-based hierarchy that is com-
pletely separate. Alternatively, you can integrate your class in an existing hierarchy, typically
by adding parent nodes on top of the hierarchy (your class is richer), by adding children node at
the root of the hierarchy (your class is more constrained), or by inserting a node in the tree.
These coercion hierarchies are implicit, in the sense that they are implied by the vec_ptype2()
implementations. There is no structured way to create or modify a hierarchy, instead you need
to implement the appropriate coercion methods for all the types in your hierarchy, and diligently
return the richer type in each case. The vec_ptype2() implementations are not transitive nor
inherited, so all pairwise methods between classes lying on a given path must be implemented
manually. This is something we might make easier in the future.

vec_cast():
The second generic, vec_cast(), is the one that looks at the data and actually performs the
conversion. Because it has access to more information than vec_ptype2(), it may be stricter and
cause an error in more cases. vec_cast() has three possible behaviours:

• Determine that the prototypes of the two inputs are not compatible. This must be decided in
exactly the same way as for vec_ptype2(). Call stop_incompatible_cast() if you can
determine from the attributes that the types are not compatible.

• Detect incompatible values. Usually this is because the target type is too restricted for the
values supported by the input type. For example, a fractional number can’t be converted to
an integer. The method should throw an error in that case.

• Return the input vector converted to the target type if all values are compatible. Whereas
vec_ptype2() must return the same type when the inputs are permuted, vec_cast() is di-
rectional. It always returns the type of the right-hand side, or dies trying.

theory-faq-coercion 45

Double dispatch:
The dispatch mechanism for vec_ptype2() and vec_cast() looks like S3 but is actually a cus-
tom mechanism. Compared to S3, it has the following differences:

• It dispatches on the classes of the first two inputs.
• There is no inheritance of ptype2 and cast methods. This is because the S3 class hierarchy is

not necessarily the same as the coercion hierarchy.
• NextMethod() does not work. Parent methods must be called explicitly if necessary.
• The default method is hard-coded.

Data frames:
The determination of the common type of data frames with vec_ptype2() happens in three steps:

1. Match the columns of the two input data frames. If some columns don’t exist, they are created
and filled with adequately typed NA values.

2. Find the common type for each column by calling vec_ptype2() on each pair of matched
columns.

3. Find the common data frame type. For example the common type of a grouped tibble and
a tibble is a grouped tibble because the latter is the richer type. The common type of a data
table and a data frame is a data table.

vec_cast() operates similarly. If a data frame is cast to a target type that has fewer columns, this
is an error.
If you are implementing coercion methods for data frames, you will need to explicitly call the
parent methods that perform the common type determination or the type conversion described
above. These are exported as df_ptype2() and df_cast().

Data frame fallbacks:
Being too strict with data frame combinations would cause too much pain because there are
many data frame subclasses in the wild that don’t implement vctrs methods. We have decided to
implement a special fallback behaviour for foreign data frames. Incompatible data frames fall
back to a base data frame:

df1 <- data.frame(x = 1)
df2 <- structure(df1, class = c("foreign_df", "data.frame"))

vec_rbind(df1, df2)
#> x
#> 1 1
#> 2 1

When a tibble is involved, we fall back to tibble:

df3 <- tibble::as_tibble(df1)

vec_rbind(df1, df3)
#> # A tibble: 2 x 1
#> x
#> <dbl>
#> 1 1
#> 2 1

46 theory-faq-recycling

These fallbacks are not ideal but they make sense because all data frames share a common data
structure. This is not generally the case for vectors. For example factors and characters have
different representations, and it is not possible to find a fallback time mechanically.
However this fallback has a big downside: implementing vctrs methods for your data frame
subclass is a breaking behaviour change. The proper coercion behaviour for your data frame
class should be specified as soon as possible to limit the consequences of changing the behaviour
of your class in R scripts.

theory-faq-recycling FAQ - How does recycling work in vctrs and the tidyverse?

Description

Recycling describes the concept of repeating elements of one vector to match the size of another.
There are two rules that underlie the “tidyverse” recycling rules:

• Vectors of size 1 will be recycled to the size of any other vector

• Otherwise, all vectors must have the same size

Examples

Vectors of size 1 are recycled to the size of any other vector:

tibble(x = 1:3, y = 1L)
#> # A tibble: 3 x 2
#> x y
#> <int> <int>
#> 1 1 1
#> 2 2 1
#> 3 3 1

This includes vectors of size 0:

tibble(x = integer(), y = 1L)
#> # A tibble: 0 x 2
#> # i 2 variables: x <int>, y <int>

If vectors aren’t size 1, they must all be the same size. Otherwise, an error is thrown:

tibble(x = 1:3, y = 4:7)
#> Error in `tibble()`:
#> ! Tibble columns must have compatible sizes.
#> * Size 3: Existing data.
#> * Size 4: Column `y`.
#> i Only values of size one are recycled.

vec-rep 47

vctrs backend

Packages in r-lib and the tidyverse generally use vec_size_common() and vec_recycle_common()
as the backends for handling recycling rules.

• vec_size_common() returns the common size of multiple vectors, after applying the recycling
rules

• vec_recycle_common() goes one step further, and actually recycles the vectors to their com-
mon size

vec_size_common(1:3, "x")
#> [1] 3

vec_recycle_common(1:3, "x")
#> [[1]]
#> [1] 1 2 3
#>
#> [[2]]
#> [1] "x" "x" "x"

vec_size_common(1:3, c("x", "y"))
#> Error:
#> ! Can't recycle `..1` (size 3) to match `..2` (size 2).

Base R recycling rules

The recycling rules described here are stricter than the ones generally used by base R, which are:

• If any vector is length 0, the output will be length 0

• Otherwise, the output will be length max(length_x, length_y), and a warning will be thrown
if the length of the longer vector is not an integer multiple of the length of the shorter vector.

We explore the base R rules in detail in vignette("type-size").

vec-rep Repeat a vector

Description

• vec_rep() repeats an entire vector a set number of times.

• vec_rep_each() repeats each element of a vector a set number of times.

• vec_unrep() compresses a vector with repeated values. The repeated values are returned as
a key alongside the number of times each key is repeated.

48 vec-rep

Usage

vec_rep(
x,
times,
...,
error_call = current_env(),
x_arg = "x",
times_arg = "times"

)

vec_rep_each(
x,
times,
...,
error_call = current_env(),
x_arg = "x",
times_arg = "times"

)

vec_unrep(x)

Arguments

x A vector.
times For vec_rep(), a single integer for the number of times to repeat the entire

vector.
For vec_rep_each(), an integer vector of the number of times to repeat each
element of x. times will be recycled to the size of x.

... These dots are for future extensions and must be empty.
error_call The execution environment of a currently running function, e.g. caller_env().

The function will be mentioned in error messages as the source of the error. See
the call argument of abort() for more information.

x_arg, times_arg
Argument names for errors.

Details

Using vec_unrep() and vec_rep_each() together is similar to using base::rle() and base::inverse.rle().
The following invariant shows the relationship between the two functions:

compressed <- vec_unrep(x)
identical(x, vec_rep_each(compressed$key, compressed$times))

There are two main differences between vec_unrep() and base::rle():

• vec_unrep() treats adjacent missing values as equivalent, while rle() treats them as different
values.

• vec_unrep() works along the size of x, while rle() works along its length. This means that
vec_unrep() works on data frames by compressing repeated rows.

vec-set 49

Value

For vec_rep(), a vector the same type as x with size vec_size(x) * times.

For vec_rep_each(), a vector the same type as x with size sum(vec_recycle(times, vec_size(x))).

For vec_unrep(), a data frame with two columns, key and times. key is a vector with the same
type as x, and times is an integer vector.

Dependencies

• vec_slice()

Examples

Repeat the entire vector
vec_rep(1:2, 3)

Repeat within each vector
vec_rep_each(1:2, 3)
x <- vec_rep_each(1:2, c(3, 4))
x

After using `vec_rep_each()`, you can recover the original vector
with `vec_unrep()`
vec_unrep(x)

df <- data.frame(x = 1:2, y = 3:4)

`rep()` repeats columns of data frames, and returns lists
rep(df, each = 2)

`vec_rep()` and `vec_rep_each()` repeat rows, and return data frames
vec_rep(df, 2)
vec_rep_each(df, 2)

`rle()` treats adjacent missing values as different
y <- c(1, NA, NA, 2)
rle(y)

`vec_unrep()` treats them as equivalent
vec_unrep(y)

vec-set Set operations

Description

• vec_set_intersect() returns all values in both x and y.

• vec_set_difference() returns all values in x but not y. Note that this is an asymmetric set
difference, meaning it is not commutative.

50 vec-set

• vec_set_union() returns all values in either x or y.

• vec_set_symmetric_difference() returns all values in either x or y but not both. This is a
commutative difference.

Because these are set operations, these functions only return unique values from x and y, returned
in the order they first appeared in the original input. Names of x and y are retained on the result, but
names are always taken from x if the value appears in both inputs.

These functions work similarly to intersect(), setdiff(), and union(), but don’t strip attributes
and can be used with data frames.

Usage

vec_set_intersect(
x,
y,
...,
ptype = NULL,
x_arg = "x",
y_arg = "y",
error_call = current_env()

)

vec_set_difference(
x,
y,
...,
ptype = NULL,
x_arg = "x",
y_arg = "y",
error_call = current_env()

)

vec_set_union(
x,
y,
...,
ptype = NULL,
x_arg = "x",
y_arg = "y",
error_call = current_env()

)

vec_set_symmetric_difference(
x,
y,
...,
ptype = NULL,
x_arg = "x",
y_arg = "y",

vec-set 51

error_call = current_env()
)

Arguments

x, y A pair of vectors.

... These dots are for future extensions and must be empty.

ptype If NULL, the default, the output type is determined by computing the common
type between x and y. If supplied, both x and y will be cast to this type.

x_arg, y_arg Argument names for x and y. These are used in error messages.

error_call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort() for more information.

Details

Missing values are treated as equal to other missing values. For doubles and complexes, NaN are
equal to other NaN, but not to NA.

Value

A vector of the common type of x and y (or ptype, if supplied) containing the result of the corre-
sponding set function.

Dependencies

vec_set_intersect():
• vec_proxy_equal()

• vec_slice()

• vec_ptype2()

• vec_cast()

vec_set_difference():
• vec_proxy_equal()

• vec_slice()

• vec_ptype2()

• vec_cast()

vec_set_union():
• vec_proxy_equal()

• vec_slice()

• vec_ptype2()

• vec_cast()

• vec_c()

vec_set_symmetric_difference():

52 vec-set

• vec_proxy_equal()

• vec_slice()

• vec_ptype2()

• vec_cast()

• vec_c()

Examples

x <- c(1, 2, 1, 4, 3)
y <- c(2, 5, 5, 1)

All unique values in both `x` and `y`.
Duplicates in `x` and `y` are always removed.
vec_set_intersect(x, y)

All unique values in `x` but not `y`
vec_set_difference(x, y)

All unique values in either `x` or `y`
vec_set_union(x, y)

All unique values in either `x` or `y` but not both
vec_set_symmetric_difference(x, y)

These functions can also be used with data frames
x <- data_frame(

a = c(2, 3, 2, 2),
b = c("j", "k", "j", "l")

)
y <- data_frame(

a = c(1, 2, 2, 2, 3),
b = c("j", "l", "j", "l", "j")

)

vec_set_intersect(x, y)
vec_set_difference(x, y)
vec_set_union(x, y)
vec_set_symmetric_difference(x, y)

Vector names don't affect set membership, but if you'd like to force
them to, you can transform the vector into a two column data frame
x <- c(a = 1, b = 2, c = 2, d = 3)
y <- c(c = 2, b = 1, a = 3, d = 3)

vec_set_intersect(x, y)

x <- data_frame(name = names(x), value = unname(x))
y <- data_frame(name = names(y), value = unname(y))

vec_set_intersect(x, y)

vector-checks 53

vector-checks Vector checks

Description

• obj_is_vector() tests if x is considered a vector in the vctrs sense. See Vectors and scalars
below for the exact details.

• obj_check_vector() uses obj_is_vector() and throws a standardized and informative er-
ror if it returns FALSE.

• vec_check_size() tests if x has size size, and throws an informative error if it doesn’t.

Usage

obj_is_vector(x)

obj_check_vector(x, ..., arg = caller_arg(x), call = caller_env())

vec_check_size(x, size, ..., arg = caller_arg(x), call = caller_env())

Arguments

x For obj_*() functions, an object. For vec_*() functions, a vector.

... These dots are for future extensions and must be empty.

arg An argument name as a string. This argument will be mentioned in error mes-
sages as the input that is at the origin of a problem.

call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort() for more information.

size The size to check for.

Value

• obj_is_vector() returns a single TRUE or FALSE.

• obj_check_vector() returns NULL invisibly, or errors.

• vec_check_size() returns NULL invisibly, or errors.

Vectors and scalars

Informally, a vector is a collection that makes sense to use as column in a data frame. The following
rules define whether or not x is considered a vector.

If no vec_proxy() method has been registered, x is a vector if:

• The base type of the object is atomic: "logical", "integer", "double", "complex", "character",
or "raw".

• x is a list, as defined by obj_is_list().

54 vector-checks

• x is a data.frame.

If a vec_proxy() method has been registered, x is a vector if:

• The proxy satisfies one of the above conditions.
• The base type of the proxy is "list", regardless of its class. S3 lists are thus treated as scalars

unless they implement a vec_proxy() method.

Otherwise an object is treated as scalar and cannot be used as a vector. In particular:

• NULL is not a vector.
• S3 lists like lm objects are treated as scalars by default.
• Objects of type expression are not treated as vectors.

Technical limitations

• Support for S4 vectors is currently limited to objects that inherit from an atomic type.
• Subclasses of data.frame that append their class to the back of the "class" attribute are not

treated as vectors. If you inherit from an S3 class, always prepend your class to the front
of the "class" attribute for correct dispatch. This matches our general principle of allowing
subclasses but not mixins.

Examples

obj_is_vector(1)

Data frames are vectors
obj_is_vector(data_frame())

Bare lists are vectors
obj_is_vector(list())

S3 lists are vectors if they explicitly inherit from `"list"`
x <- structure(list(), class = c("my_list", "list"))
obj_is_list(x)
obj_is_vector(x)

But if they don't explicitly inherit from `"list"`, they aren't
automatically considered to be vectors. Instead, vctrs considers this
to be a scalar object, like a linear model returned from `lm()`.
y <- structure(list(), class = "my_list")
obj_is_list(y)
obj_is_vector(y)

`obj_check_vector()` throws an informative error if the input
isn't a vector
try(obj_check_vector(y))

`vec_check_size()` throws an informative error if the size of the
input doesn't match `size`
vec_check_size(1:5, size = 5)
try(vec_check_size(1:5, size = 4))

vec_as_names 55

vec_as_names Retrieve and repair names

Description

vec_as_names() takes a character vector of names and repairs it according to the repair argument.
It is the r-lib and tidyverse equivalent of base::make.names().

vctrs deals with a few levels of name repair:

• minimal names exist. The names attribute is not NULL. The name of an unnamed element is ""
and never NA. For instance, vec_as_names() always returns minimal names and data frames
created by the tibble package have names that are, at least, minimal.

• unique names are minimal, have no duplicates, and can be used where a variable name is
expected. Empty names, ..., and .. followed by a sequence of digits are banned.

– All columns can be accessed by name via df[["name"]] and df$`name` and with(df,
`name`).

• universal names are unique and syntactic (see Details for more).

– Names work everywhere, without quoting: df$name and with(df, name) and lm(name1
~ name2, data = df) and dplyr::select(df, name) all work.

universal implies unique, unique implies minimal. These levels are nested.

Usage

vec_as_names(
names,
...,
repair = c("minimal", "unique", "universal", "check_unique", "unique_quiet",
"universal_quiet"),

repair_arg = NULL,
quiet = FALSE,
call = caller_env()

)

Arguments

names A character vector.

... These dots are for future extensions and must be empty.

repair Either a string or a function. If a string, it must be one of "check_unique",
"minimal", "unique", "universal", "unique_quiet", or "universal_quiet".
If a function, it is invoked with a vector of minimal names and must return min-
imal names, otherwise an error is thrown.

• Minimal names are never NULL or NA. When an element doesn’t have a
name, its minimal name is an empty string.

56 vec_as_names

• Unique names are unique. A suffix is appended to duplicate names to make
them unique.

• Universal names are unique and syntactic, meaning that you can safely use
the names as variables without causing a syntax error.

The "check_unique" option doesn’t perform any name repair. Instead, an error
is raised if the names don’t suit the "unique" criteria.
The options "unique_quiet" and "universal_quiet" are here to help the user
who calls this function indirectly, via another function which exposes repair
but not quiet. Specifying repair = "unique_quiet" is like specifying repair = "unique", quiet = TRUE.
When the "*_quiet" options are used, any setting of quiet is silently overrid-
den.

repair_arg If specified and repair = "check_unique", any errors will include a hint to set
the repair_arg.

quiet By default, the user is informed of any renaming caused by repairing the names.
This only concerns unique and universal repairing. Set quiet to TRUE to silence
the messages.
Users can silence the name repair messages by setting the "rlib_name_repair_verbosity"
global option to "quiet".

call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort() for more information.

minimal names

minimal names exist. The names attribute is not NULL. The name of an unnamed element is "" and
never NA.

Examples:

Original names of a vector with length 3: NULL
minimal names: "" "" ""

Original names: "x" NA
minimal names: "x" ""

unique names

unique names are minimal, have no duplicates, and can be used (possibly with backticks) in con-
texts where a variable is expected. Empty names, ..., and .. followed by a sequence of digits are
banned. If a data frame has unique names, you can index it by name, and also access the columns
by name. In particular, df[["name"]] and df$`name` and also with(df, `name`) always work.

There are many ways to make names unique. We append a suffix of the form ...j to any name
that is "" or a duplicate, where j is the position. We also change ..# and ... to ...#.

Example:

Original names: "" "x" "" "y" "x" "..2" "..."
unique names: "...1" "x...2" "...3" "y" "x...5" "...6" "...7"

vec_as_names 57

Pre-existing suffixes of the form ...j are always stripped, prior to making names unique, i.e.
reconstructing the suffixes. If this interacts poorly with your names, you should take control of
name repair.

universal names

universal names are unique and syntactic, meaning they:

• Are never empty (inherited from unique).

• Have no duplicates (inherited from unique).

• Are not Do not have the form ..i, where i is a number (inherited from unique).

• Consist of letters, numbers, and the dot . or underscore _ characters.

• Start with a letter or start with the dot . not followed by a number.

• Are not a reserved word, e.g., if or function or TRUE.

If a vector has universal names, variable names can be used "as is" in code. They work well with
nonstandard evaluation, e.g., df$name works.

vctrs has a different method of making names syntactic than base::make.names(). In general,
vctrs prepends one or more dots . until the name is syntactic.

Examples:

Original names: "" "x" NA "x"
universal names: "...1" "x...2" "...3" "x...4"

Original names: "(y)" "_z" ".2fa" "FALSE"
universal names: ".y." "._z" "..2fa" ".FALSE"

See Also

rlang::names2() returns the names of an object, after making them minimal.

Examples

By default, `vec_as_names()` returns minimal names:
vec_as_names(c(NA, NA, "foo"))

You can make them unique:
vec_as_names(c(NA, NA, "foo"), repair = "unique")

Universal repairing fixes any non-syntactic name:
vec_as_names(c("_foo", "+"), repair = "universal")

58 vec_bind

vec_bind Combine many data frames into one data frame

Description

This pair of functions binds together data frames (and vectors), either row-wise or column-wise.
Row-binding creates a data frame with common type across all arguments. Column-binding creates
a data frame with common length across all arguments.

Usage

vec_rbind(
...,
.ptype = NULL,
.names_to = rlang::zap(),
.name_repair = c("unique", "universal", "check_unique", "unique_quiet",
"universal_quiet"),

.name_spec = NULL,

.error_call = current_env()
)

vec_cbind(
...,
.ptype = NULL,
.size = NULL,
.name_repair = c("unique", "universal", "check_unique", "minimal", "unique_quiet",

"universal_quiet"),
.error_call = current_env()

)

Arguments

... Data frames or vectors.
When the inputs are named:

• vec_rbind() assigns names to row names unless .names_to is supplied.
In that case the names are assigned in the column defined by .names_to.

• vec_cbind() creates packed data frame columns with named inputs.

NULL inputs are silently ignored. Empty (e.g. zero row) inputs will not appear
in the output, but will affect the derived .ptype.

.ptype If NULL, the default, the output type is determined by computing the common
type across all elements of
Alternatively, you can supply .ptype to give the output known type. If getOption("vctrs.no_guessing")
is TRUE you must supply this value: this is a convenient way to make production
code demand fixed types.

.names_to This controls what to do with input names supplied in

vec_bind 59

• By default, input names are zapped.
• If a string, specifies a column where the input names will be copied. These

names are often useful to identify rows with their original input. If a column
name is supplied and ... is not named, an integer column is used instead.

• If NULL, the input names are used as row names.

.name_repair One of "unique", "universal", "check_unique", "unique_quiet", or "universal_quiet".
See vec_as_names() for the meaning of these options.
With vec_rbind(), the repair function is applied to all inputs separately. This is
because vec_rbind() needs to align their columns before binding the rows, and
thus needs all inputs to have unique names. On the other hand, vec_cbind()
applies the repair function after all inputs have been concatenated together in
a final data frame. Hence vec_cbind() allows the more permissive minimal
names repair.

.name_spec A name specification (as documented in vec_c()) for combining the outer in-
puts names in ... and the inner row names of the inputs. This only has an effect
when .names_to is set to NULL, which causes the input names to be assigned as
row names.

.error_call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort() for more information.

.size If, NULL, the default, will determine the number of rows in vec_cbind() output
by using the tidyverse recycling rules.
Alternatively, specify the desired number of rows, and any inputs of length 1
will be recycled appropriately.

Value

A data frame, or subclass of data frame.

If ... is a mix of different data frame subclasses, vec_ptype2() will be used to determine the
output type. For vec_rbind(), this will determine the type of the container and the type of each
column; for vec_cbind() it only determines the type of the output container. If there are no non-
NULL inputs, the result will be data.frame().

Invariants

All inputs are first converted to a data frame. The conversion for 1d vectors depends on the direction
of binding:

• For vec_rbind(), each element of the vector becomes a column in a single row.

• For vec_cbind(), each element of the vector becomes a row in a single column.

Once the inputs have all become data frames, the following invariants are observed for row-binding:

• vec_size(vec_rbind(x, y)) == vec_size(x) + vec_size(y)

• vec_ptype(vec_rbind(x, y)) = vec_ptype_common(x, y)

60 vec_bind

Note that if an input is an empty vector, it is first converted to a 1-row data frame with 0 columns.
Despite being empty, its effective size for the total number of rows is 1.

For column-binding, the following invariants apply:

• vec_size(vec_cbind(x, y)) == vec_size_common(x, y)

• vec_ptype(vec_cbind(x, y)) == vec_cbind(vec_ptype(x), vec_ptype(x))

Dependencies

vctrs dependencies:

• vec_cast_common()

• vec_proxy()

• vec_init()

• vec_assign()

• vec_restore()

base dependencies of vec_rbind():

• base::c()

If columns to combine inherit from a common class, vec_rbind() falls back to base::c() if
there exists a c() method implemented for this class hierarchy.

See Also

vec_c() for combining 1d vectors.

Examples

row binding ---

common columns are coerced to common class
vec_rbind(
data.frame(x = 1),
data.frame(x = FALSE)

)

unique columns are filled with NAs
vec_rbind(

data.frame(x = 1),
data.frame(y = "x")

)

null inputs are ignored
vec_rbind(

data.frame(x = 1),
NULL,
data.frame(x = 2)

)

bare vectors are treated as rows

vec_c 61

vec_rbind(
c(x = 1, y = 2),
c(x = 3)

)

default names will be supplied if arguments are not named
vec_rbind(

1:2,
1:3,
1:4

)

column binding --------------------------------------

each input is recycled to have common length
vec_cbind(

data.frame(x = 1),
data.frame(y = 1:3)

)

bare vectors are treated as columns
vec_cbind(

data.frame(x = 1),
y = letters[1:3]

)

if you supply a named data frame, it is packed in a single column
data <- vec_cbind(

x = data.frame(a = 1, b = 2),
y = 1

)
data

Packed data frames are nested in a single column. This makes it
possible to access it through a single name:
data$x

since the base print method is suboptimal with packed data
frames, it is recommended to use tibble to work with these:
if (rlang::is_installed("tibble")) {

vec_cbind(x = tibble::tibble(a = 1, b = 2), y = 1)
}

duplicate names are flagged
vec_cbind(x = 1, x = 2)

vec_c Combine many vectors into one vector

62 vec_c

Description

Combine all arguments into a new vector of common type.

Usage

vec_c(
...,
.ptype = NULL,
.name_spec = NULL,
.name_repair = c("minimal", "unique", "check_unique", "universal", "unique_quiet",

"universal_quiet"),
.error_arg = "",
.error_call = current_env()

)

Arguments

... Vectors to coerce.

.ptype If NULL, the default, the output type is determined by computing the common
type across all elements of
Alternatively, you can supply .ptype to give the output known type. If getOption("vctrs.no_guessing")
is TRUE you must supply this value: this is a convenient way to make production
code demand fixed types.

.name_spec A name specification for combining inner and outer names. This is relevant
for inputs passed with a name, when these inputs are themselves named, like
outer = c(inner = 1), or when they have length greater than 1: outer = 1:2.
By default, these cases trigger an error. You can resolve the error by providing a
specification that describes how to combine the names or the indices of the inner
vector with the name of the input. This specification can be:

• A function of two arguments. The outer name is passed as a string to the
first argument, and the inner names or positions are passed as second argu-
ment.

• An anonymous function as a purrr-style formula.
• A glue specification of the form "{outer}_{inner}".
• An rlang::zap() object, in which case both outer and inner names are

ignored and the result is unnamed.

See the name specification topic.

.name_repair How to repair names, see repair options in vec_as_names().

.error_arg An argument name as a string. This argument will be mentioned in error mes-
sages as the input that is at the origin of a problem.

.error_call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort() for more information.

vec_c 63

Value

A vector with class given by .ptype, and length equal to the sum of the vec_size() of the contents
of

The vector will have names if the individual components have names (inner names) or if the argu-
ments are named (outer names). If both inner and outer names are present, an error is thrown unless
a .name_spec is provided.

Invariants

• vec_size(vec_c(x, y)) == vec_size(x) + vec_size(y)

• vec_ptype(vec_c(x, y)) == vec_ptype_common(x, y).

Dependencies

vctrs dependencies:
• vec_cast_common() with fallback
• vec_proxy()

• vec_restore()

base dependencies:
• base::c()

If inputs inherit from a common class hierarchy, vec_c() falls back to base::c() if there exists
a c() method implemented for this class hierarchy.

See Also

vec_cbind()/vec_rbind() for combining data frames by rows or columns.

Examples

vec_c(FALSE, 1L, 1.5)

Date/times --------------------------
c(Sys.Date(), Sys.time())
c(Sys.time(), Sys.Date())

vec_c(Sys.Date(), Sys.time())
vec_c(Sys.time(), Sys.Date())

Factors -----------------------------
c(factor("a"), factor("b"))
vec_c(factor("a"), factor("b"))

By default, named inputs must be length 1:
vec_c(name = 1)
try(vec_c(name = 1:3))

Pass a name specification to work around this:

64 vec_cast

vec_c(name = 1:3, .name_spec = "{outer}_{inner}")

See `?name_spec` for more examples of name specifications.

vec_cast Cast a vector to a specified type

Description

vec_cast() provides directional conversions from one type of vector to another. Along with
vec_ptype2(), this generic forms the foundation of type coercions in vctrs.

Usage

vec_cast(x, to, ..., x_arg = caller_arg(x), to_arg = "", call = caller_env())

vec_cast_common(..., .to = NULL, .arg = "", .call = caller_env())

S3 method for class 'logical'
vec_cast(x, to, ...)

S3 method for class 'integer'
vec_cast(x, to, ...)

S3 method for class 'double'
vec_cast(x, to, ...)

S3 method for class 'complex'
vec_cast(x, to, ...)

S3 method for class 'raw'
vec_cast(x, to, ...)

S3 method for class 'character'
vec_cast(x, to, ...)

S3 method for class 'list'
vec_cast(x, to, ...)

Arguments

x Vectors to cast.

to, .to Type to cast to. If NULL, x will be returned as is.

... For vec_cast_common(), vectors to cast. For vec_cast(), vec_cast_default(),
and vec_restore(), these dots are only for future extensions and should be
empty.

vec_cast 65

x_arg Argument name for x, used in error messages to inform the user about the loca-
tions of incompatible types (see stop_incompatible_type()).

to_arg Argument name to used in error messages to inform the user about the locations
of incompatible types (see stop_incompatible_type()).

call, .call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort() for more information.

.arg An argument name as a string. This argument will be mentioned in error mes-
sages as the input that is at the origin of a problem.

Value

A vector the same length as x with the same type as to, or an error if the cast is not possible. An
error is generated if information is lost when casting between compatible types (i.e. when there is
no 1-to-1 mapping for a specific value).

Implementing coercion methods

• For an overview of how these generics work and their roles in vctrs, see ?theory-faq-coercion.

• For an example of implementing coercion methods for simple vectors, see ?howto-faq-coercion.

• For an example of implementing coercion methods for data frame subclasses, see ?howto-faq-coercion-data-frame.

• For a tutorial about implementing vctrs classes from scratch, see vignette("s3-vector").

Dependencies of vec_cast_common()

vctrs dependencies:
• vec_ptype2()

• vec_cast()

base dependencies:
Some functions enable a base-class fallback for vec_cast_common(). In that case the inputs are
deemed compatible when they have the same base type and inherit from the same base class.

See Also

Call stop_incompatible_cast() when you determine from the attributes that an input can’t be
cast to the target type.

Examples

x is a double, but no information is lost
vec_cast(1, integer())

When information is lost the cast fails
try(vec_cast(c(1, 1.5), integer()))
try(vec_cast(c(1, 2), logical()))

You can suppress this error and get the partial results

66 vec_chop

allow_lossy_cast(vec_cast(c(1, 1.5), integer()))
allow_lossy_cast(vec_cast(c(1, 2), logical()))

By default this suppress all lossy cast errors without
distinction, but you can be specific about what cast is allowed
by supplying prototypes
allow_lossy_cast(vec_cast(c(1, 1.5), integer()), to_ptype = integer())
try(allow_lossy_cast(vec_cast(c(1, 2), logical()), to_ptype = integer()))

No sensible coercion is possible so an error is generated
try(vec_cast(1.5, factor("a")))

Cast to common type
vec_cast_common(factor("a"), factor(c("a", "b")))

vec_chop Chopping

Description

• vec_chop() provides an efficient method to repeatedly slice a vector. It captures the pattern of
map(indices, vec_slice, x = x). When no indices are supplied, it is generally equivalent
to as.list().

• list_unchop() combines a list of vectors into a single vector, placing elements in the output
according to the locations specified by indices. It is similar to vec_c(), but gives greater
control over how the elements are combined. When no indices are supplied, it is identical to
vec_c(), but typically a little faster.

If indices selects every value in x exactly once, in any order, then list_unchop() is the inverse
of vec_chop() and the following invariant holds:

list_unchop(vec_chop(x, indices = indices), indices = indices) == x

Usage

vec_chop(x, ..., indices = NULL, sizes = NULL)

list_unchop(
x,
...,
indices = NULL,
ptype = NULL,
name_spec = NULL,
name_repair = c("minimal", "unique", "check_unique", "universal", "unique_quiet",

"universal_quiet"),
error_arg = "x",
error_call = current_env()

)

vec_chop 67

Arguments

x A vector
... These dots are for future extensions and must be empty.
indices For vec_chop(), a list of positive integer vectors to slice x with, or NULL.

Can’t be used if sizes is already specified. If both indices and sizes are
NULL, x is split into its individual elements, equivalent to using an indices of
as.list(vec_seq_along(x)).
For list_unchop(), a list of positive integer vectors specifying the locations to
place elements of x in. Each element of x is recycled to the size of the corre-
sponding index vector. The size of indices must match the size of x. If NULL, x
is combined in the order it is provided in, which is equivalent to using vec_c().

sizes An integer vector of non-negative sizes representing sequential indices to slice
x with, or NULL. Can’t be used if indices is already specified.
For example, sizes = c(2, 4) is equivalent to indices = list(1:2, 3:6), but
is typically faster.
sum(sizes) must be equal to vec_size(x), i.e. sizes must completely parti-
tion x, but an individual size is allowed to be 0.

ptype If NULL, the default, the output type is determined by computing the common
type across all elements of x. Alternatively, you can supply ptype to give the
output a known type.

name_spec A name specification for combining inner and outer names. This is relevant
for inputs passed with a name, when these inputs are themselves named, like
outer = c(inner = 1), or when they have length greater than 1: outer = 1:2.
By default, these cases trigger an error. You can resolve the error by providing a
specification that describes how to combine the names or the indices of the inner
vector with the name of the input. This specification can be:

• A function of two arguments. The outer name is passed as a string to the
first argument, and the inner names or positions are passed as second argu-
ment.

• An anonymous function as a purrr-style formula.
• A glue specification of the form "{outer}_{inner}".
• An rlang::zap() object, in which case both outer and inner names are

ignored and the result is unnamed.
See the name specification topic.

name_repair How to repair names, see repair options in vec_as_names().
error_arg An argument name as a string. This argument will be mentioned in error mes-

sages as the input that is at the origin of a problem.
error_call The execution environment of a currently running function, e.g. caller_env().

The function will be mentioned in error messages as the source of the error. See
the call argument of abort() for more information.

Value

• vec_chop(): A list where each element has the same type as x. The size of the list is equal
to vec_size(indices), vec_size(sizes), or vec_size(x) depending on whether or not
indices or sizes is provided.

68 vec_chop

• list_unchop(): A vector of type vec_ptype_common(!!!x), or ptype, if specified. The
size is computed as vec_size_common(!!!indices) unless the indices are NULL, in which
case the size is vec_size_common(!!!x).

Dependencies of vec_chop()

• vec_slice()

Dependencies of list_unchop()

• vec_c()

Examples

vec_chop(1:5)

These two are equivalent
vec_chop(1:5, indices = list(1:2, 3:5))
vec_chop(1:5, sizes = c(2, 3))

Can also be used on data frames
vec_chop(mtcars, indices = list(1:3, 4:6))

If `indices` selects every value in `x` exactly once,
in any order, then `list_unchop()` inverts `vec_chop()`
x <- c("a", "b", "c", "d")
indices <- list(2, c(3, 1), 4)
vec_chop(x, indices = indices)
list_unchop(vec_chop(x, indices = indices), indices = indices)

When unchopping, size 1 elements of `x` are recycled
to the size of the corresponding index
list_unchop(list(1, 2:3), indices = list(c(1, 3, 5), c(2, 4)))

Names are retained, and outer names can be combined with inner
names through the use of a `name_spec`
lst <- list(x = c(a = 1, b = 2), y = 1)
list_unchop(lst, indices = list(c(3, 2), c(1, 4)), name_spec = "{outer}_{inner}")

An alternative implementation of `ave()` can be constructed using
`vec_chop()` and `list_unchop()` in combination with `vec_group_loc()`
ave2 <- function(.x, .by, .f, ...) {

indices <- vec_group_loc(.by)$loc
chopped <- vec_chop(.x, indices = indices)
out <- lapply(chopped, .f, ...)
list_unchop(out, indices = indices)

}

breaks <- warpbreaks$breaks
wool <- warpbreaks$wool

ave2(breaks, wool, mean)

vec_compare 69

identical(
ave2(breaks, wool, mean),
ave(breaks, wool, FUN = mean)

)

If you know your input is sorted and you'd like to split on the groups,
`vec_run_sizes()` can be efficiently combined with `sizes`
df <- data_frame(

g = c(2, 5, 5, 6, 6, 6, 6, 8, 9, 9),
x = 1:10

)
vec_chop(df, sizes = vec_run_sizes(df$g))

If you have a list of homogeneous vectors, sometimes it can be useful to
unchop, apply a function to the flattened vector, and then rechop according
to the original indices. This can be done efficiently with `list_sizes()`.
x <- list(c(1, 2, 1), c(3, 1), 5, double())
x_flat <- list_unchop(x)
x_flat <- x_flat + max(x_flat)
vec_chop(x_flat, sizes = list_sizes(x))

vec_compare Compare two vectors

Description

Compare two vectors

Usage

vec_compare(x, y, na_equal = FALSE, .ptype = NULL)

Arguments

x, y Vectors with compatible types and lengths.

na_equal Should NA values be considered equal?

.ptype Override to optionally specify common type

Value

An integer vector with values -1 for x < y, 0 if x == y, and 1 if x > y. If na_equal is FALSE, the
result will be NA if either x or y is NA.

S3 dispatch

vec_compare() is not generic for performance; instead it uses vec_proxy_compare() to create a
proxy that is used in the comparison.

70 vec_count

Dependencies

• vec_cast_common() with fallback

• vec_recycle_common()

• vec_proxy_compare()

Examples

vec_compare(c(TRUE, FALSE, NA), FALSE)
vec_compare(c(TRUE, FALSE, NA), FALSE, na_equal = TRUE)

vec_compare(1:10, 5)
vec_compare(runif(10), 0.5)
vec_compare(letters[1:10], "d")

df <- data.frame(x = c(1, 1, 1, 2), y = c(0, 1, 2, 1))
vec_compare(df, data.frame(x = 1, y = 1))

vec_count Count unique values in a vector

Description

Count the number of unique values in a vector. vec_count() has two important differences to
table(): it returns a data frame, and when given multiple inputs (as a data frame), it only counts
combinations that appear in the input.

Usage

vec_count(x, sort = c("count", "key", "location", "none"))

Arguments

x A vector (including a data frame).

sort One of "count", "key", "location", or "none".

• "count", the default, puts most frequent values at top
• "key", orders by the output key column (i.e. unique values of x)
• "location", orders by location where key first seen. This is useful if you

want to match the counts up to other unique/duplicated functions.
• "none", leaves unordered. This is not guaranteed to produce the same or-

dering across R sessions, but is the fastest method.

Value

A data frame with columns key (same type as x) and count (an integer vector).

vec_detect_complete 71

Dependencies

• vec_proxy_equal()

• vec_slice()

• vec_order()

Examples

vec_count(mtcars$vs)
vec_count(iris$Species)

If you count a data frame you'll get a data frame
column in the output
str(vec_count(mtcars[c("vs", "am")]))

Sorting ---------------------------------------

x <- letters[rpois(100, 6)]
default is to sort by frequency
vec_count(x)

by can sort by key
vec_count(x, sort = "key")

or location of first value
vec_count(x, sort = "location")
head(x)

or not at all
vec_count(x, sort = "none")

vec_detect_complete Complete

Description

vec_detect_complete() detects "complete" observations. An observation is considered complete
if it is non-missing. For most vectors, this implies that vec_detect_complete(x) == !vec_detect_missing(x).

For data frames and matrices, a row is only considered complete if all elements of that row are non-
missing. To compare, !vec_detect_missing(x) detects rows that are partially complete (they
have at least one non-missing value).

Usage

vec_detect_complete(x)

Arguments

x A vector

72 vec_duplicate

Details

A record type vector is similar to a data frame, and is only considered complete if all fields are
non-missing.

Value

A logical vector with the same size as x.

See Also

stats::complete.cases()

Examples

x <- c(1, 2, NA, 4, NA)

For most vectors, this is identical to `!vec_detect_missing(x)`
vec_detect_complete(x)
!vec_detect_missing(x)

df <- data_frame(
x = x,
y = c("a", "b", NA, "d", "e")

)

This returns `TRUE` where all elements of the row are non-missing.
Compare that with `!vec_detect_missing()`, which detects rows that have at
least one non-missing value.
df2 <- df
df2$all_non_missing <- vec_detect_complete(df)
df2$any_non_missing <- !vec_detect_missing(df)
df2

vec_duplicate Find duplicated values

Description

• vec_duplicate_any(): detects the presence of duplicated values, similar to anyDuplicated().

• vec_duplicate_detect(): returns a logical vector describing if each element of the vector
is duplicated elsewhere. Unlike duplicated(), it reports all duplicated values, not just the
second and subsequent repetitions.

• vec_duplicate_id(): returns an integer vector giving the location of the first occurrence of
the value.

vec_duplicate 73

Usage

vec_duplicate_any(x)

vec_duplicate_detect(x)

vec_duplicate_id(x)

Arguments

x A vector (including a data frame).

Value

• vec_duplicate_any(): a logical vector of length 1.

• vec_duplicate_detect(): a logical vector the same length as x.

• vec_duplicate_id(): an integer vector the same length as x.

Missing values

In most cases, missing values are not considered to be equal, i.e. NA == NA is not TRUE. This be-
haviour would be unappealing here, so these functions consider all NAs to be equal. (Similarly, all
NaN are also considered to be equal.)

Dependencies

• vec_proxy_equal()

See Also

vec_unique() for functions that work with the dual of duplicated values: unique values.

Examples

vec_duplicate_any(1:10)
vec_duplicate_any(c(1, 1:10))

x <- c(10, 10, 20, 30, 30, 40)
vec_duplicate_detect(x)
Note that `duplicated()` doesn't consider the first instance to
be a duplicate
duplicated(x)

Identify elements of a vector by the location of the first element that
they're equal to:
vec_duplicate_id(x)
Location of the unique values:
vec_unique_loc(x)
Equivalent to `duplicated()`:
vec_duplicate_id(x) == seq_along(x)

74 vec_equal

vec_equal Equality

Description

vec_equal() tests if two vectors are equal.

Usage

vec_equal(x, y, na_equal = FALSE, .ptype = NULL)

Arguments

x, y Vectors with compatible types and lengths.

na_equal Should NA values be considered equal?

.ptype Override to optionally specify common type

Value

A logical vector the same size as the common size of x and y. Will only contain NAs if na_equal is
FALSE.

Dependencies

• vec_cast_common() with fallback

• vec_recycle_common()

• vec_proxy_equal()

See Also

vec_detect_missing()

Examples

vec_equal(c(TRUE, FALSE, NA), FALSE)
vec_equal(c(TRUE, FALSE, NA), FALSE, na_equal = TRUE)

vec_equal(5, 1:10)
vec_equal("d", letters[1:10])

df <- data.frame(x = c(1, 1, 2, 1), y = c(1, 2, 1, NA))
vec_equal(df, data.frame(x = 1, y = 2))

vec_expand_grid 75

vec_expand_grid Create a data frame from all combinations of the inputs

Description

vec_expand_grid() creates a new data frame by creating a grid of all possible combinations of the
input vectors. It is inspired by expand.grid(). Compared with expand.grid(), it:

• Produces sorted output by default by varying the first column the slowest, rather than the
fastest. Control this with .vary.

• Never converts strings to factors.

• Does not add additional attributes.

• Drops NULL inputs.

• Can expand any vector type, including data frames and records.

Usage

vec_expand_grid(
...,
.vary = "slowest",
.name_repair = "check_unique",
.error_call = current_env()

)

Arguments

... Name-value pairs. The name will become the column name in the resulting data
frame.

.vary One of:

• "slowest" to vary the first column slowest. This produces sorted output
and is generally the most useful.

• "fastest" to vary the first column fastest. This matches the behavior of
expand.grid().

.name_repair One of "check_unique", "unique", "universal", "minimal", "unique_quiet",
or "universal_quiet". See vec_as_names() for the meaning of these options.

.error_call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort() for more information.

Details

If any input is empty (i.e. size 0), then the result will have 0 rows.

If no inputs are provided, the result is a 1 row data frame with 0 columns. This is consistent with
the fact that prod() with no inputs returns 1.

76 vec_fill_missing

Value

A data frame with as many columns as there are inputs in ... and as many rows as the prod() of
the sizes of the inputs.

Examples

vec_expand_grid(x = 1:2, y = 1:3)

Use `.vary` to match `expand.grid()`:
vec_expand_grid(x = 1:2, y = 1:3, .vary = "fastest")

Can also expand data frames
vec_expand_grid(

x = data_frame(a = 1:2, b = 3:4),
y = 1:4

)

vec_fill_missing Fill in missing values with the previous or following value

Description

[Experimental]

vec_fill_missing() fills gaps of missing values with the previous or following non-missing
value.

Usage

vec_fill_missing(
x,
direction = c("down", "up", "downup", "updown"),
max_fill = NULL

)

Arguments

x A vector

direction Direction in which to fill missing values. Must be either "down", "up", "downup",
or "updown".

max_fill A single positive integer specifying the maximum number of sequential missing
values that will be filled. If NULL, there is no limit.

vec_init 77

Examples

x <- c(NA, NA, 1, NA, NA, NA, 3, NA, NA)

Filling down replaces missing values with the previous non-missing value
vec_fill_missing(x, direction = "down")

To also fill leading missing values, use `"downup"`
vec_fill_missing(x, direction = "downup")

Limit the number of sequential missing values to fill with `max_fill`
vec_fill_missing(x, max_fill = 1)

Data frames are filled rowwise. Rows are only considered missing
if all elements of that row are missing.
y <- c(1, NA, 2, NA, NA, 3, 4, NA, 5)
df <- data_frame(x = x, y = y)
df

vec_fill_missing(df)

vec_init Initialize a vector

Description

Initialize a vector

Usage

vec_init(x, n = 1L)

Arguments

x Template of vector to initialize.

n Desired size of result.

Dependencies

• vec_slice()

Examples

vec_init(1:10, 3)
vec_init(Sys.Date(), 5)
vec_init(mtcars, 2)

78 vec_interleave

vec_interleave Interleave many vectors into one vector

Description

vec_interleave() combines multiple vectors together, much like vec_c(), but does so in such a
way that the elements of each vector are interleaved together.

It is a more efficient equivalent to the following usage of vec_c():

vec_interleave(x, y) == vec_c(x[1], y[1], x[2], y[2], ..., x[n], y[n])

Usage

vec_interleave(
...,
.ptype = NULL,
.name_spec = NULL,
.name_repair = c("minimal", "unique", "check_unique", "universal", "unique_quiet",

"universal_quiet")
)

Arguments

... Vectors to interleave. These will be recycled to a common size.

.ptype If NULL, the default, the output type is determined by computing the common
type across all elements of
Alternatively, you can supply .ptype to give the output known type. If getOption("vctrs.no_guessing")
is TRUE you must supply this value: this is a convenient way to make production
code demand fixed types.

.name_spec A name specification for combining inner and outer names. This is relevant
for inputs passed with a name, when these inputs are themselves named, like
outer = c(inner = 1), or when they have length greater than 1: outer = 1:2.
By default, these cases trigger an error. You can resolve the error by providing a
specification that describes how to combine the names or the indices of the inner
vector with the name of the input. This specification can be:

• A function of two arguments. The outer name is passed as a string to the
first argument, and the inner names or positions are passed as second argu-
ment.

• An anonymous function as a purrr-style formula.
• A glue specification of the form "{outer}_{inner}".
• An rlang::zap() object, in which case both outer and inner names are

ignored and the result is unnamed.

See the name specification topic.

.name_repair How to repair names, see repair options in vec_as_names().

vec_locate_matches 79

Dependencies

vctrs dependencies:
• list_unchop()

Examples

The most common case is to interleave two vectors
vec_interleave(1:3, 4:6)

But you aren't restricted to just two
vec_interleave(1:3, 4:6, 7:9, 10:12)

You can also interleave data frames
x <- data_frame(x = 1:2, y = c("a", "b"))
y <- data_frame(x = 3:4, y = c("c", "d"))

vec_interleave(x, y)

vec_locate_matches Locate observations matching specified conditions

Description

[Experimental]
vec_locate_matches() is a more flexible version of vec_match() used to identify locations
where each value of needles matches one or multiple values in haystack. Unlike vec_match(),
vec_locate_matches() returns all matches by default, and can match on binary conditions other
than equality, such as >, >=, <, and <=.

Usage

vec_locate_matches(
needles,
haystack,
...,
condition = "==",
filter = "none",
incomplete = "compare",
no_match = NA_integer_,
remaining = "drop",
multiple = "all",
relationship = "none",
nan_distinct = FALSE,
chr_proxy_collate = NULL,
needles_arg = "needles",
haystack_arg = "haystack",
error_call = current_env()

)

80 vec_locate_matches

Arguments

needles, haystack
Vectors used for matching.

• needles represents the vector to search for.
• haystack represents the vector to search in.

Prior to comparison, needles and haystack are coerced to the same type.

... These dots are for future extensions and must be empty.

condition Condition controlling how needles should be compared against haystack to
identify a successful match.

• One of: "==", ">", ">=", "<", or "<=".
• For data frames, a length 1 or ncol(needles) character vector containing

only the above options, specifying how matching is determined for each
column.

filter Filter to be applied to the matched results.

• "none" doesn’t apply any filter.
• "min" returns only the minimum haystack value matching the current nee-

dle.
• "max" returns only the maximum haystack value matching the current nee-

dle.
• For data frames, a length 1 or ncol(needles) character vector containing

only the above options, specifying a filter to apply to each column.

Filters don’t have any effect on "==" conditions, but are useful for computing
"rolling" matches with other conditions.
A filter can return multiple haystack matches for a particular needle if the max-
imum or minimum haystack value is duplicated in haystack. These can be
further controlled with multiple.

incomplete Handling of missing and incomplete values in needles.

• "compare" uses condition to determine whether or not a missing value in
needles matches a missing value in haystack. If condition is ==, >=, or
<=, then missing values will match.

• "match" always allows missing values in needles to match missing values
in haystack, regardless of the condition.

• "drop" drops incomplete values in needles from the result.
• "error" throws an error if any needles are incomplete.
• If a single integer is provided, this represents the value returned in the
haystack column for values of needles that are incomplete. If no_match
= NA, setting incomplete = NA forces incomplete values in needles to be
treated like unmatched values.

nan_distinct determines whether a NA is allowed to match a NaN.

no_match Handling of needles without a match.

• "drop" drops needles with zero matches from the result.
• "error" throws an error if any needles have zero matches.

vec_locate_matches 81

• If a single integer is provided, this represents the value returned in the
haystack column for values of needles that have zero matches. The de-
fault represents an unmatched needle with NA.

remaining Handling of haystack values that needles never matched.

• "drop" drops remaining haystack values from the result. Typically, this is
the desired behavior if you only care when needles has a match.

• "error" throws an error if there are any remaining haystack values.
• If a single integer is provided (often NA), this represents the value returned

in the needles column for the remaining haystack values that needles
never matched. Remaining haystack values are always returned at the end
of the result.

multiple Handling of needles with multiple matches. For each needle:

• "all" returns all matches detected in haystack.
• "any" returns any match detected in haystack with no guarantees on which

match will be returned. It is often faster than "first" and "last" if you
just need to detect if there is at least one match.

• "first" returns the first match detected in haystack.
• "last" returns the last match detected in haystack.

relationship Handling of the expected relationship between needles and haystack. If the
expectations chosen from the list below are invalidated, an error is thrown.

• "none" doesn’t perform any relationship checks.
• "one-to-one" expects:

– Each value in needles matches at most 1 value in haystack.
– Each value in haystack matches at most 1 value in needles.

• "one-to-many" expects:
– Each value in needles matches any number of values in haystack.
– Each value in haystack matches at most 1 value in needles.

• "many-to-one" expects:
– Each value in needles matches at most 1 value in haystack.
– Each value in haystack matches any number of values in needles.

• "many-to-many" expects:
– Each value in needles matches any number of values in haystack.
– Each value in haystack matches any number of values in needles.

This performs no checks, and is identical to "none", but is provided to
allow you to be explicit about this relationship if you know it exists.

• "warn-many-to-many" doesn’t assume there is any known relationship,
but will warn if needles and haystack have a many-to-many relationship
(which is typically unexpected), encouraging you to either take a closer
look at your inputs or make this relationship explicit by specifying "many-to-many".

relationship is applied after filter and multiple to allow potential multiple
matches to be filtered out first.
relationship doesn’t handle cases where there are zero matches. For that, see
no_match and remaining.

82 vec_locate_matches

nan_distinct A single logical specifying whether or not NaN should be considered distinct
from NA for double and complex vectors. If TRUE, NaN will always be ordered
between NA and non-missing numbers.

chr_proxy_collate

A function generating an alternate representation of character vectors to use for
collation, often used for locale-aware ordering.

• If NULL, no transformation is done.
• Otherwise, this must be a function of one argument. If the input contains a

character vector, it will be passed to this function after it has been translated
to UTF-8. This function should return a character vector with the same
length as the input. The result should sort as expected in the C-locale,
regardless of encoding.

For data frames, chr_proxy_collate will be applied to all character columns.
Common transformation functions include: tolower() for case-insensitive or-
dering and stringi::stri_sort_key() for locale-aware ordering.

needles_arg, haystack_arg
Argument tags for needles and haystack used in error messages.

error_call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort() for more information.

Details

vec_match() is identical to (but often slightly faster than):

vec_locate_matches(
needles,
haystack,
condition = "==",
multiple = "first",
nan_distinct = TRUE

)

vec_locate_matches() is extremely similar to a SQL join between needles and haystack, with
the default being most similar to a left join.

Be very careful when specifying match conditions. If a condition is misspecified, it is very easy
to accidentally generate an exponentially large number of matches.

Value

A two column data frame containing the locations of the matches.

• needles is an integer vector containing the location of the needle currently being matched.

• haystack is an integer vector containing the location of the corresponding match in the
haystack for the current needle.

vec_locate_matches 83

Dependencies of vec_locate_matches()

• vec_order_radix()

• vec_detect_complete()

Examples

x <- c(1, 2, NA, 3, NaN)
y <- c(2, 1, 4, NA, 1, 2, NaN)

By default, for each value of `x`, all matching locations in `y` are
returned
matches <- vec_locate_matches(x, y)
matches

The result can be used to slice the inputs to align them
data_frame(

x = vec_slice(x, matches$needles),
y = vec_slice(y, matches$haystack)

)

If multiple matches are present, control which is returned with `multiple`
vec_locate_matches(x, y, multiple = "first")
vec_locate_matches(x, y, multiple = "last")
vec_locate_matches(x, y, multiple = "any")

Use `relationship` to add constraints and error on multiple matches if
they aren't expected
try(vec_locate_matches(x, y, relationship = "one-to-one"))

In this case, the `NA` in `y` matches two rows in `x`
try(vec_locate_matches(x, y, relationship = "one-to-many"))

By default, `NA` is treated as being identical to `NaN`.
Using `nan_distinct = TRUE` treats `NA` and `NaN` as different values, so
`NA` can only match `NA`, and `NaN` can only match `NaN`.
vec_locate_matches(x, y, nan_distinct = TRUE)

If you never want missing values to match, set `incomplete = NA` to return
`NA` in the `haystack` column anytime there was an incomplete value
in `needles`.
vec_locate_matches(x, y, incomplete = NA)

Using `incomplete = NA` allows us to enforce the one-to-many relationship
that we couldn't before
vec_locate_matches(x, y, relationship = "one-to-many", incomplete = NA)

`no_match` allows you to specify the returned value for a needle with
zero matches. Note that this is different from an incomplete value,
so specifying `no_match` allows you to differentiate between incomplete
values and unmatched values.
vec_locate_matches(x, y, incomplete = NA, no_match = 0L)

84 vec_locate_matches

If you want to require that every `needle` has at least 1 match, set
`no_match` to `"error"`:
try(vec_locate_matches(x, y, incomplete = NA, no_match = "error"))

By default, `vec_locate_matches()` detects equality between `needles` and
`haystack`. Using `condition`, you can detect where an inequality holds
true instead. For example, to find every location where `x[[i]] >= y`:
matches <- vec_locate_matches(x, y, condition = ">=")

data_frame(
x = vec_slice(x, matches$needles),
y = vec_slice(y, matches$haystack)

)

You can limit which matches are returned with a `filter`. For example,
with the above example you can filter the matches returned by `x[[i]] >= y`
down to only the ones containing the maximum `y` value of those matches.
matches <- vec_locate_matches(x, y, condition = ">=", filter = "max")

Here, the matches for the `3` needle value have been filtered down to
only include the maximum haystack value of those matches, `2`. This is
often referred to as a rolling join.
data_frame(

x = vec_slice(x, matches$needles),
y = vec_slice(y, matches$haystack)

)

In the very rare case that you need to generate locations for a
cross match, where every value of `x` is forced to match every
value of `y` regardless of what the actual values are, you can
replace `x` and `y` with integer vectors of the same size that contain
a single value and match on those instead.
x_proxy <- vec_rep(1L, vec_size(x))
y_proxy <- vec_rep(1L, vec_size(y))
nrow(vec_locate_matches(x_proxy, y_proxy))
vec_size(x) * vec_size(y)

By default, missing values will match other missing values when using
`==`, `>=`, or `<=` conditions, but not when using `>` or `<` conditions.
This is similar to how `vec_compare(x, y, na_equal = TRUE)` works.
x <- c(1, NA)
y <- c(NA, 2)

vec_locate_matches(x, y, condition = "<=")
vec_locate_matches(x, y, condition = "<")

You can force missing values to match regardless of the `condition`
by using `incomplete = "match"`
vec_locate_matches(x, y, condition = "<", incomplete = "match")

You can also use data frames for `needles` and `haystack`. The
`condition` will be recycled to the number of columns in `needles`, or
you can specify varying conditions per column. In this example, we take

vec_match 85

a vector of date `values` and find all locations where each value is
between lower and upper bounds specified by the `haystack`.
values <- as.Date("2019-01-01") + 0:9
needles <- data_frame(lower = values, upper = values)

set.seed(123)
lower <- as.Date("2019-01-01") + sample(10, 10, replace = TRUE)
upper <- lower + sample(3, 10, replace = TRUE)
haystack <- data_frame(lower = lower, upper = upper)

(values >= lower) & (values <= upper)
matches <- vec_locate_matches(needles, haystack, condition = c(">=", "<="))

data_frame(
lower = vec_slice(lower, matches$haystack),
value = vec_slice(values, matches$needle),
upper = vec_slice(upper, matches$haystack)

)

vec_match Find matching observations across vectors

Description

vec_in() returns a logical vector based on whether needle is found in haystack. vec_match()
returns an integer vector giving location of needle in haystack, or NA if it’s not found.

Usage

vec_match(
needles,
haystack,
...,
na_equal = TRUE,
needles_arg = "",
haystack_arg = ""

)

vec_in(
needles,
haystack,
...,
na_equal = TRUE,
needles_arg = "",
haystack_arg = ""

)

86 vec_match

Arguments

needles, haystack
Vector of needles to search for in vector haystack. haystack should usually be
unique; if not vec_match() will only return the location of the first match.
needles and haystack are coerced to the same type prior to comparison.

... These dots are for future extensions and must be empty.

na_equal If TRUE, missing values in needles can be matched to missing values in haystack.
If FALSE, they propagate, missing values in needles are represented as NA in the
return value.

needles_arg, haystack_arg
Argument tags for needles and haystack used in error messages.

Details

vec_in() is equivalent to %in%; vec_match() is equivalent to match().

Value

A vector the same length as needles. vec_in() returns a logical vector; vec_match() returns an
integer vector.

Missing values

In most cases places in R, missing values are not considered to be equal, i.e. NA == NA is not TRUE.
The exception is in matching functions like match() and merge(), where an NA will match another
NA. By vec_match() and vec_in() will match NAs; but you can control this behaviour with the
na_equal argument.

Dependencies

• vec_cast_common() with fallback

• vec_proxy_equal()

Examples

hadley <- strsplit("hadley", "")[[1]]
vec_match(hadley, letters)

vowels <- c("a", "e", "i", "o", "u")
vec_match(hadley, vowels)
vec_in(hadley, vowels)

Only the first index of duplicates is returned
vec_match(c("a", "b"), c("a", "b", "a", "b"))

vec_names 87

vec_names Get or set the names of a vector

Description

These functions work like rlang::names2(), names() and names<-(), except that they return or
modify the the rowwise names of the vector. These are:

• The usual names() for atomic vectors and lists

• The row names for data frames and matrices

• The names of the first dimension for arrays Rowwise names are size consistent: the length of
the names always equals vec_size().

vec_names2() returns the repaired names from a vector, even if it is unnamed. See vec_as_names()
for details on name repair.

vec_names() is a bare-bones version that returns NULL if the vector is unnamed.

vec_set_names() sets the names or removes them.

Usage

vec_names2(
x,
...,
repair = c("minimal", "unique", "universal", "check_unique", "unique_quiet",
"universal_quiet"),

quiet = FALSE
)

vec_names(x)

vec_set_names(x, names)

Arguments

x A vector with names

... These dots are for future extensions and must be empty.

repair Either a string or a function. If a string, it must be one of "check_unique",
"minimal", "unique", "universal", "unique_quiet", or "universal_quiet".
If a function, it is invoked with a vector of minimal names and must return min-
imal names, otherwise an error is thrown.

• Minimal names are never NULL or NA. When an element doesn’t have a
name, its minimal name is an empty string.

• Unique names are unique. A suffix is appended to duplicate names to make
them unique.

88 vec_order

• Universal names are unique and syntactic, meaning that you can safely use
the names as variables without causing a syntax error.

The "check_unique" option doesn’t perform any name repair. Instead, an error
is raised if the names don’t suit the "unique" criteria.
The options "unique_quiet" and "universal_quiet" are here to help the user
who calls this function indirectly, via another function which exposes repair
but not quiet. Specifying repair = "unique_quiet" is like specifying repair = "unique", quiet = TRUE.
When the "*_quiet" options are used, any setting of quiet is silently overrid-
den.

quiet By default, the user is informed of any renaming caused by repairing the names.
This only concerns unique and universal repairing. Set quiet to TRUE to silence
the messages.
Users can silence the name repair messages by setting the "rlib_name_repair_verbosity"
global option to "quiet".

names A character vector, or NULL.

Value

vec_names2() returns the names of x, repaired. vec_names() returns the names of x or NULL if
unnamed. vec_set_names() returns x with names updated.

Examples

vec_names2(1:3)
vec_names2(1:3, repair = "unique")
vec_names2(c(a = 1, b = 2))

`vec_names()` consistently returns the rowwise names of data frames and arrays:
vec_names(data.frame(a = 1, b = 2))
names(data.frame(a = 1, b = 2))
vec_names(mtcars)
names(mtcars)
vec_names(Titanic)
names(Titanic)

vec_set_names(1:3, letters[1:3])
vec_set_names(data.frame(a = 1:3), letters[1:3])

vec_order Order and sort vectors

Description

Order and sort vectors

vec_order 89

Usage

vec_order(
x,
...,
direction = c("asc", "desc"),
na_value = c("largest", "smallest")

)

vec_sort(
x,
...,
direction = c("asc", "desc"),
na_value = c("largest", "smallest")

)

Arguments

x A vector

... These dots are for future extensions and must be empty.

direction Direction to sort in. Defaults to ascending.

na_value Should NAs be treated as the largest or smallest values?

Value

• vec_order() an integer vector the same size as x.

• vec_sort() a vector with the same size and type as x.

Differences with order()

Unlike the na.last argument of order() which decides the positions of missing values irrespective
of the decreasing argument, the na_value argument of vec_order() interacts with direction.
If missing values are considered the largest value, they will appear last in ascending order, and first
in descending order.

Dependencies of vec_order()

• vec_proxy_order()

Dependencies of vec_sort()

• vec_proxy_order()

• vec_order()

• vec_slice()

90 vec_ptype

Examples

x <- round(c(runif(9), NA), 3)
vec_order(x)
vec_sort(x)
vec_sort(x, direction = "desc")

Can also handle data frames
df <- data.frame(g = sample(2, 10, replace = TRUE), x = x)
vec_order(df)
vec_sort(df)
vec_sort(df, direction = "desc")

Missing values interpreted as largest values are last when
in increasing order:
vec_order(c(1, NA), na_value = "largest", direction = "asc")
vec_order(c(1, NA), na_value = "largest", direction = "desc")

vec_ptype Find the prototype of a set of vectors

Description

vec_ptype() returns the unfinalised prototype of a single vector. vec_ptype_common() finds the
common type of multiple vectors. vec_ptype_show() nicely prints the common type of any num-
ber of inputs, and is designed for interactive exploration.

Usage

vec_ptype(x, ..., x_arg = "", call = caller_env())

vec_ptype_common(..., .ptype = NULL, .arg = "", .call = caller_env())

vec_ptype_show(...)

Arguments

x A vector

... For vec_ptype(), these dots are for future extensions and must be empty.
For vec_ptype_common() and vec_ptype_show(), vector inputs.

x_arg Argument name for x. This is used in error messages to inform the user about
the locations of incompatible types.

call, .call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort() for more information.

vec_ptype 91

.ptype If NULL, the default, the output type is determined by computing the common
type across all elements of
Alternatively, you can supply .ptype to give the output known type. If getOption("vctrs.no_guessing")
is TRUE you must supply this value: this is a convenient way to make production
code demand fixed types.

.arg An argument name as a string. This argument will be mentioned in error mes-
sages as the input that is at the origin of a problem.

Value

vec_ptype() and vec_ptype_common() return a prototype (a size-0 vector)

vec_ptype()

vec_ptype() returns size 0 vectors potentially containing attributes but no data. Generally, this is
just vec_slice(x, 0L), but some inputs require special handling.

• While you can’t slice NULL, the prototype of NULL is itself. This is because we treat NULL as
an identity value in the vec_ptype2() monoid.

• The prototype of logical vectors that only contain missing values is the special unspecified
type, which can be coerced to any other 1d type. This allows bare NAs to represent missing
values for any 1d vector type.

See internal-faq-ptype2-identity for more information about identity values.

vec_ptype() is a performance generic. It is not necessary to implement it because the default
method will work for any vctrs type. However the default method builds around other vctrs prim-
itives like vec_slice() which incurs performance costs. If your class has a static prototype, you
might consider implementing a custom vec_ptype() method that returns a constant. This will
improve the performance of your class in many cases (common type imputation in particular).

Because it may contain unspecified vectors, the prototype returned by vec_ptype() is said to be
unfinalised. Call vec_ptype_finalise() to finalise it. Commonly you will need the finalised
prototype as returned by vec_slice(x, 0L).

vec_ptype_common()

vec_ptype_common() first finds the prototype of each input, then successively calls vec_ptype2()
to find a common type. It returns a finalised prototype.

Dependencies of vec_ptype()

• vec_slice() for returning an empty slice

Dependencies of vec_ptype_common()

• vec_ptype2()

• vec_ptype_finalise()

92 vec_ptype2.logical

Examples

Unknown types --
vec_ptype_show()
vec_ptype_show(NA)
vec_ptype_show(NULL)

Vectors --
vec_ptype_show(1:10)
vec_ptype_show(letters)
vec_ptype_show(TRUE)

vec_ptype_show(Sys.Date())
vec_ptype_show(Sys.time())
vec_ptype_show(factor("a"))
vec_ptype_show(ordered("a"))

Matrices ---
The prototype of a matrix includes the number of columns
vec_ptype_show(array(1, dim = c(1, 2)))
vec_ptype_show(array("x", dim = c(1, 2)))

Data frames --
The prototype of a data frame includes the prototype of
every column
vec_ptype_show(iris)

The prototype of multiple data frames includes the prototype
of every column that in any data frame
vec_ptype_show(

data.frame(x = TRUE),
data.frame(y = 2),
data.frame(z = "a")

)

vec_ptype2.logical Find the common type for a pair of vectors

Description

vec_ptype2() defines the coercion hierarchy for a set of related vector types. Along with vec_cast(),
this generic forms the foundation of type coercions in vctrs.

vec_ptype2() is relevant when you are implementing vctrs methods for your class, but it should not
usually be called directly. If you need to find the common type of a set of inputs, call vec_ptype_common()
instead. This function supports multiple inputs and finalises the common type.

Usage

S3 method for class 'logical'
vec_ptype2(x, y, ..., x_arg = "", y_arg = "")

vec_ptype2.logical 93

S3 method for class 'integer'
vec_ptype2(x, y, ..., x_arg = "", y_arg = "")

S3 method for class 'double'
vec_ptype2(x, y, ..., x_arg = "", y_arg = "")

S3 method for class 'complex'
vec_ptype2(x, y, ..., x_arg = "", y_arg = "")

S3 method for class 'character'
vec_ptype2(x, y, ..., x_arg = "", y_arg = "")

S3 method for class 'raw'
vec_ptype2(x, y, ..., x_arg = "", y_arg = "")

S3 method for class 'list'
vec_ptype2(x, y, ..., x_arg = "", y_arg = "")

vec_ptype2(
x,
y,
...,
x_arg = caller_arg(x),
y_arg = caller_arg(y),
call = caller_env()

)

Arguments

x, y Vector types.

... These dots are for future extensions and must be empty.

x_arg, y_arg Argument names for x and y. These are used in error messages to inform the user
about the locations of incompatible types (see stop_incompatible_type()).

call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort() for more information.

Implementing coercion methods

• For an overview of how these generics work and their roles in vctrs, see ?theory-faq-coercion.

• For an example of implementing coercion methods for simple vectors, see ?howto-faq-coercion.

• For an example of implementing coercion methods for data frame subclasses, see ?howto-faq-coercion-data-frame.

• For a tutorial about implementing vctrs classes from scratch, see vignette("s3-vector").

Dependencies

• vec_ptype() is applied to x and y

94 vec_rank

See Also

stop_incompatible_type() when you determine from the attributes that an input can’t be cast to
the target type.

vec_rank Compute ranks

Description

vec_rank() computes the sample ranks of a vector. For data frames, ranks are computed along the
rows, using all columns after the first to break ties.

Usage

vec_rank(
x,
...,
ties = c("min", "max", "sequential", "dense"),
incomplete = c("rank", "na"),
direction = "asc",
na_value = "largest",
nan_distinct = FALSE,
chr_proxy_collate = NULL

)

Arguments

x A vector

... These dots are for future extensions and must be empty.

ties Ranking of duplicate values.

• "min": Use the current rank for all duplicates. The next non-duplicate value
will have a rank incremented by the number of duplicates present.

• "max": Use the current rank + n_duplicates - 1 for all duplicates. The
next non-duplicate value will have a rank incremented by the number of
duplicates present.

• "sequential": Use an increasing sequence of ranks starting at the current
rank, applied to duplicates in order of appearance.

• "dense": Use the current rank for all duplicates. The next non-duplicate
value will have a rank incremented by 1, effectively removing any gaps in
the ranking.

incomplete Ranking of missing and incomplete observations.

• "rank": Rank incomplete observations normally. Missing values within
incomplete observations will be affected by na_value and nan_distinct.

• "na": Don’t rank incomplete observations at all. Instead, they are given a
rank of NA. In this case, na_value and nan_distinct have no effect.

vec_rank 95

direction Direction to sort in.

• A single "asc" or "desc" for ascending or descending order respectively.
• For data frames, a length 1 or ncol(x) character vector containing only
"asc" or "desc", specifying the direction for each column.

na_value Ordering of missing values.

• A single "largest" or "smallest" for ordering missing values as the
largest or smallest values respectively.

• For data frames, a length 1 or ncol(x) character vector containing only
"largest" or "smallest", specifying how missing values should be or-
dered within each column.

nan_distinct A single logical specifying whether or not NaN should be considered distinct
from NA for double and complex vectors. If TRUE, NaN will always be ordered
between NA and non-missing numbers.

chr_proxy_collate

A function generating an alternate representation of character vectors to use for
collation, often used for locale-aware ordering.

• If NULL, no transformation is done.
• Otherwise, this must be a function of one argument. If the input contains a

character vector, it will be passed to this function after it has been translated
to UTF-8. This function should return a character vector with the same
length as the input. The result should sort as expected in the C-locale,
regardless of encoding.

For data frames, chr_proxy_collate will be applied to all character columns.
Common transformation functions include: tolower() for case-insensitive or-
dering and stringi::stri_sort_key() for locale-aware ordering.

Details

Unlike base::rank(), when incomplete = "rank" all missing values are given the same rank,
rather than an increasing sequence of ranks. When nan_distinct = FALSE, NaN values are given
the same rank as NA, otherwise they are given a rank that differentiates them from NA.

Like vec_order_radix(), ordering is done in the C-locale. This can affect the ranks of character
vectors, especially regarding how uppercase and lowercase letters are ranked. See the documenta-
tion of vec_order_radix() for more information.

Dependencies

• vec_order_radix()

• vec_slice()

Examples

x <- c(5L, 6L, 3L, 3L, 5L, 3L)

vec_rank(x, ties = "min")
vec_rank(x, ties = "max")

96 vec_recycle

Sequential ranks use an increasing sequence for duplicates
vec_rank(x, ties = "sequential")

Dense ranks remove gaps between distinct values,
even if there are duplicates
vec_rank(x, ties = "dense")

y <- c(NA, x, NA, NaN)

Incomplete values match other incomplete values by default, and their
overall position can be adjusted with `na_value`
vec_rank(y, na_value = "largest")
vec_rank(y, na_value = "smallest")

NaN can be ranked separately from NA if required
vec_rank(y, nan_distinct = TRUE)

Rank in descending order. Since missing values are the largest value,
they are given a rank of `1` when ranking in descending order.
vec_rank(y, direction = "desc", na_value = "largest")

Give incomplete values a rank of `NA` by setting `incomplete = "na"`
vec_rank(y, incomplete = "na")

Can also rank data frames, using columns after the first to break ties
z <- c(2L, 3L, 4L, 4L, 5L, 2L)
df <- data_frame(x = x, z = z)
df

vec_rank(df)

vec_recycle Vector recycling

Description

vec_recycle(x, size) recycles a single vector to a given size. vec_recycle_common(...) recy-
cles multiple vectors to their common size. All functions obey the vctrs recycling rules, and will
throw an error if recycling is not possible. See vec_size() for the precise definition of size.

Usage

vec_recycle(x, size, ..., x_arg = "", call = caller_env())

vec_recycle_common(..., .size = NULL, .arg = "", .call = caller_env())

vec_seq_along 97

Arguments

x A vector to recycle.
size Desired output size.
... Depending on the function used:

• For vec_recycle_common(), vectors to recycle.
• For vec_recycle(), these dots should be empty.

x_arg Argument name for x. These are used in error messages to inform the user about
which argument has an incompatible size.

call, .call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort() for more information.

.size Desired output size. If omitted, will use the common size from vec_size_common().

.arg An argument name as a string. This argument will be mentioned in error mes-
sages as the input that is at the origin of a problem.

Dependencies

• vec_slice()

Examples

Inputs with 1 observation are recycled
vec_recycle_common(1:5, 5)
vec_recycle_common(integer(), 5)
Not run:
vec_recycle_common(1:5, 1:2)

End(Not run)

Data frames and matrices are recycled along their rows
vec_recycle_common(data.frame(x = 1), 1:5)
vec_recycle_common(array(1:2, c(1, 2)), 1:5)
vec_recycle_common(array(1:3, c(1, 3, 1)), 1:5)

vec_seq_along Useful sequences

Description

vec_seq_along() is equivalent to seq_along() but uses size, not length. vec_init_along()
creates a vector of missing values with size matching an existing object.

Usage

vec_seq_along(x)

vec_init_along(x, y = x)

98 vec_size

Arguments

x, y Vectors

Value

• vec_seq_along() an integer vector with the same size as x.

• vec_init_along() a vector with the same type as x and the same size as y.

Examples

vec_seq_along(mtcars)
vec_init_along(head(mtcars))

vec_size Number of observations

Description

vec_size(x) returns the size of a vector. vec_is_empty() returns TRUE if the size is zero, FALSE
otherwise.

The size is distinct from the length() of a vector because it generalises to the "number of obser-
vations" for 2d structures, i.e. it’s the number of rows in matrix or a data frame. This definition
has the important property that every column of a data frame (even data frame and matrix columns)
have the same size. vec_size_common(...) returns the common size of multiple vectors.

list_sizes() returns an integer vector containing the size of each element of a list. It is nearly
equivalent to, but faster than, map_int(x, vec_size), with the exception that list_sizes() will
error on non-list inputs, as defined by obj_is_list(). list_sizes() is to vec_size() as lengths()
is to length().

Usage

vec_size(x)

vec_size_common(
...,
.size = NULL,
.absent = 0L,
.arg = "",
.call = caller_env()

)

list_sizes(x)

vec_is_empty(x)

vec_size 99

Arguments

x, ... Vector inputs or NULL.

.size If NULL, the default, the output size is determined by recycling the lengths of all
elements of Alternatively, you can supply .size to force a known size; in
this case, x and ... are ignored.

.absent The size used when no input is provided, or when all input is NULL. If left as
NULL when no input is supplied, an error is thrown.

.arg An argument name as a string. This argument will be mentioned in error mes-
sages as the input that is at the origin of a problem.

.call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort() for more information.

Details

There is no vctrs helper that retrieves the number of columns: as this is a property of the type.

vec_size() is equivalent to NROW() but has a name that is easier to pronounce, and throws an error
when passed non-vector inputs.

Value

An integer (or double for long vectors).

vec_size_common() returns .absent if all inputs are NULL or absent, 0L by default.

Invariants

• vec_size(dataframe) == vec_size(dataframe[[i]])

• vec_size(matrix) == vec_size(matrix[, i, drop = FALSE])

• vec_size(vec_c(x, y)) == vec_size(x) + vec_size(y)

The size of NULL

The size of NULL is hard-coded to 0L in vec_size(). vec_size_common() returns .absent when
all inputs are NULL (if only some inputs are NULL, they are simply ignored).

A default size of 0 makes sense because sizes are most often queried in order to compute a total
size while assembling a collection of vectors. Since we treat NULL as an absent input by principle,
we return the identity of sizes under addition to reflect that an absent input doesn’t take up any size.

Note that other defaults might make sense under different circumstances. For instance, a default
size of 1 makes sense for finding the common size because 1 is the identity of the recycling rules.

Dependencies

• vec_proxy()

100 vec_split

See Also

vec_slice() for a variation of [compatible with vec_size(), and vec_recycle() to recycle
vectors to common length.

Examples

vec_size(1:100)
vec_size(mtcars)
vec_size(array(dim = c(3, 5, 10)))

vec_size_common(1:10, 1:10)
vec_size_common(1:10, 1)
vec_size_common(integer(), 1)

list_sizes(list("a", 1:5, letters))

vec_split Split a vector into groups

Description

This is a generalisation of split() that can split by any type of vector, not just factors. Instead of
returning the keys in the character names, the are returned in a separate parallel vector.

Usage

vec_split(x, by)

Arguments

x Vector to divide into groups.

by Vector whose unique values defines the groups.

Value

A data frame with two columns and size equal to vec_size(vec_unique(by)). The key column
has the same type as by, and the val column is a list containing elements of type vec_ptype(x).

Note for complex types, the default data.frame print method will be suboptimal, and you will
want to coerce into a tibble to better understand the output.

Dependencies

• vec_group_loc()

• vec_chop()

vec_unique 101

Examples

vec_split(mtcars$cyl, mtcars$vs)
vec_split(mtcars$cyl, mtcars[c("vs", "am")])

if (require("tibble")) {
as_tibble(vec_split(mtcars$cyl, mtcars[c("vs", "am")]))
as_tibble(vec_split(mtcars, mtcars[c("vs", "am")]))

}

vec_unique Find and count unique values

Description

• vec_unique(): the unique values. Equivalent to unique().

• vec_unique_loc(): the locations of the unique values.

• vec_unique_count(): the number of unique values.

Usage

vec_unique(x)

vec_unique_loc(x)

vec_unique_count(x)

Arguments

x A vector (including a data frame).

Value

• vec_unique(): a vector the same type as x containing only unique values.

• vec_unique_loc(): an integer vector, giving locations of unique values.

• vec_unique_count(): an integer vector of length 1, giving the number of unique values.

Dependencies

• vec_proxy_equal()

Missing values

In most cases, missing values are not considered to be equal, i.e. NA == NA is not TRUE. This be-
haviour would be unappealing here, so these functions consider all NAs to be equal. (Similarly, all
NaN are also considered to be equal.)

102 %0%

See Also

vec_duplicate for functions that work with the dual of unique values: duplicated values.

Examples

x <- rpois(100, 8)
vec_unique(x)
vec_unique_loc(x)
vec_unique_count(x)

`vec_unique()` returns values in the order that encounters them
use sort = "location" to match to the result of `vec_count()`
head(vec_unique(x))
head(vec_count(x, sort = "location"))

Normally missing values are not considered to be equal
NA == NA

But they are for the purposes of considering uniqueness
vec_unique(c(NA, NA, NA, NA, 1, 2, 1))

%0% Default value for empty vectors

Description

Use this inline operator when you need to provide a default value for empty (as defined by vec_is_empty())
vectors.

Usage

x %0% y

Arguments

x A vector

y Value to use if x is empty. To preserve type-stability, should be the same type as
x.

Examples

1:10 %0% 5
integer() %0% 5

Index

?howto-faq-coercion-data-frame, 6
%0%, 102
%in%, 86

abort(), 3, 5, 7, 38, 48, 51, 53, 56, 59, 62, 65,
67, 75, 82, 90, 93, 97, 99

anyDuplicated(), 72
as.list(), 66
as_list_of (list_of), 33

base type, 53, 65
base::c(), 39, 60, 63
base::data.frame(), 3
base::inverse.rle(), 48
base::make.names(), 55, 57
base::rank(), 95
base::rle(), 40, 41, 48

common type, 91

data.frame, 54
data_frame, 3
data_frame(), 6
developer FAQ page, 11
df_cast (df_ptype2), 6
df_cast(), 45
df_list, 5
df_list(), 4, 37
df_ptype2, 6
df_ptype2(), 19, 45
duplicated(), 72

expand.grid(), 75
expression, 54

faq-compatibility-types, 7
faq-error-incompatible-attributes, 9
faq-error-scalar-type, 9
finalised, 91
finalises, 92

howto guide, 40
howto-faq-coercion, 11
howto-faq-coercion-data-frame, 15
howto-faq-fix-scalar-type-error, 23

identity, 40
incomplete, 34, 80, 94
internal-faq-matches-algorithm, 24
internal-faq-ptype2-identity, 31, 91
intersect(), 50
is.na(), 34
is_list_of (list_of), 33

length(), 98
lengths(), 98
list_all_size (obj_is_list), 37
list_all_vectors (obj_is_list), 37
list_check_all_size (obj_is_list), 37
list_check_all_vectors (obj_is_list), 37
list_drop_empty, 33
list_of, 33
list_sizes (vec_size), 98
list_sizes(), 38
list_unchop (vec_chop), 66
list_unchop(), 79

match(), 86
merge(), 86
missing, 34

name specification topic, 36, 62, 67, 78
name_spec, 35
names(), 87
new_data_frame, 37
new_data_frame(), 4–6
new_vctr(), 39

obj_check_list (obj_is_list), 37
obj_check_vector (vector-checks), 53
obj_is_list, 37
obj_is_list(), 53, 98

103

104 INDEX

obj_is_vector (vector-checks), 53

prod(), 76

record, 72
record vector, 34
records, 75
recycle, 100
recycled, 4, 5, 48, 78
recycling rules, 59
reference-faq-compatibility, 39
reserved, 57
rlang::names2(), 57, 87
rlang::zap(), 36, 62, 67, 78
runs, 40

seq_along(), 97
setdiff(), 50
size, 91
split(), 100
stats::complete.cases(), 72
stop_incompatible_cast(), 65
stop_incompatible_type(), 7, 34, 65, 93,

94

theory overview, 40
theory-faq-coercion, 41
theory-faq-recycling, 46
tib_cast (df_ptype2), 6
tib_cast(), 19
tib_ptype2 (df_ptype2), 6
tib_ptype2(), 19
type, 99

union(), 50
unique(), 101
unspecified, 91
user FAQ, 23

vctrs recycling rules, 96
vec-rep, 47
vec-set, 49
vec_any_missing (missing), 34
vec_as_names, 55
vec_as_names(), 3, 5, 59, 62, 67, 75, 78, 87
vec_assign(), 60
vec_bind, 58
vec_c, 61
vec_c(), 39, 51, 52, 59, 60, 66–68, 78
vec_cast, 64

vec_cast(), 9, 40, 51, 52, 65, 92
vec_cast.vctrs_list_of (list_of), 33
vec_cast_common (vec_cast), 64
vec_cast_common(), 60, 63, 70, 74, 86
vec_cbind (vec_bind), 58
vec_cbind(), 16, 63
vec_check_size (vector-checks), 53
vec_chop, 66
vec_chop(), 100
vec_compare, 69
vec_count, 70
vec_count(), 39
vec_detect_complete, 71
vec_detect_complete(), 35, 83
vec_detect_missing (missing), 34
vec_detect_missing(), 74
vec_duplicate, 72, 102
vec_duplicate_any (vec_duplicate), 72
vec_duplicate_detect (vec_duplicate), 72
vec_duplicate_id (vec_duplicate), 72
vec_equal, 74
vec_expand_grid, 75
vec_fill_missing, 76
vec_group_loc(), 100
vec_identify_runs (runs), 40
vec_in (vec_match), 85
vec_init, 77
vec_init(), 60
vec_init_along (vec_seq_along), 97
vec_interleave, 78
vec_is_empty (vec_size), 98
vec_is_empty(), 102
vec_locate_matches, 79
vec_match, 85
vec_match(), 79, 82
vec_names, 87
vec_names2 (vec_names), 87
vec_order, 88
vec_order(), 71, 89
vec_order_radix(), 83, 95
vec_proxy(), 39, 40, 53, 60, 63, 99
vec_proxy_compare(), 69, 70
vec_proxy_equal(), 35, 51, 52, 71, 73, 74,

86, 101
vec_proxy_order(), 89
vec_ptype, 90
vec_ptype(), 93
vec_ptype2 (vec_ptype2.logical), 92

INDEX 105

vec_ptype2(), 9, 40, 51, 52, 64, 65, 91
vec_ptype2.logical, 92
vec_ptype2.vctrs_list_of (list_of), 33
vec_ptype_common (vec_ptype), 90
vec_ptype_common(), 92
vec_ptype_finalise(), 91
vec_ptype_show (vec_ptype), 90
vec_rank, 94
vec_rbind (vec_bind), 58
vec_rbind(), 16, 39, 63
vec_recycle, 96
vec_recycle(), 100
vec_recycle_common (vec_recycle), 96
vec_recycle_common(), 4, 5, 47, 70, 74
vec_rep (vec-rep), 47
vec_rep(), 40
vec_rep_each (vec-rep), 47
vec_rep_each(), 40
vec_restore(), 39, 40, 60, 63
vec_run_sizes (runs), 40
vec_seq_along, 97
vec_set_difference (vec-set), 49
vec_set_intersect (vec-set), 49
vec_set_names (vec_names), 87
vec_set_symmetric_difference (vec-set),

49
vec_set_union (vec-set), 49
vec_size, 98
vec_size(), 87, 96
vec_size_common (vec_size), 98
vec_size_common(), 47, 97
vec_slice(), 33, 39, 49, 51, 52, 68, 71, 89,

91, 95, 97, 100
vec_sort (vec_order), 88
vec_split, 100
vec_unique, 101
vec_unique(), 73
vec_unique_count (vec_unique), 101
vec_unique_loc (vec_unique), 101
vec_unrep (vec-rep), 47
vec_unrep(), 40, 41
vector-checks, 53
vector_recycling_rules

(theory-faq-recycling), 46

zapped, 59

	data_frame
	df_list
	df_ptype2
	faq-compatibility-types
	faq-error-incompatible-attributes
	faq-error-scalar-type
	howto-faq-coercion
	howto-faq-coercion-data-frame
	howto-faq-fix-scalar-type-error
	internal-faq-matches-algorithm
	internal-faq-ptype2-identity
	list_drop_empty
	list_of
	missing
	name_spec
	new_data_frame
	obj_is_list
	reference-faq-compatibility
	runs
	theory-faq-coercion
	theory-faq-recycling
	vec-rep
	vec-set
	vector-checks
	vec_as_names
	vec_bind
	vec_c
	vec_cast
	vec_chop
	vec_compare
	vec_count
	vec_detect_complete
	vec_duplicate
	vec_equal
	vec_expand_grid
	vec_fill_missing
	vec_init
	vec_interleave
	vec_locate_matches
	vec_match
	vec_names
	vec_order
	vec_ptype
	vec_ptype2.logical
	vec_rank
	vec_recycle
	vec_seq_along
	vec_size
	vec_split
	vec_unique
	0
	Index

