Package: tidyft 0.9.20

Tian-Yuan Huang

tidyft: Fast and Memory Efficient Data Operations in Tidy Syntax

Tidy syntax for 'data.table', using modification by reference whenever possible. This toolkit is designed for big data analysis in high-performance desktop or laptop computers. The syntax of the package is similar or identical to 'tidyverse'. It is user friendly, memory efficient and time saving. For more information, check its ancestor package 'tidyfst'.

Authors:Tian-Yuan Huang [aut, cre]

tidyft_0.9.20.tar.gz
tidyft_0.9.20.zip(r-4.5)tidyft_0.9.20.zip(r-4.4)tidyft_0.9.20.zip(r-4.3)
tidyft_0.9.20.tgz(r-4.4-any)tidyft_0.9.20.tgz(r-4.3-any)
tidyft_0.9.20.tar.gz(r-4.5-noble)tidyft_0.9.20.tar.gz(r-4.4-noble)
tidyft_0.9.20.tgz(r-4.4-emscripten)tidyft_0.9.20.tgz(r-4.3-emscripten)
tidyft.pdf |tidyft.html
tidyft/json (API)

# Install 'tidyft' in R:
install.packages('tidyft', repos = c('https://fastverse.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/hope-data-science/tidyft/issues

On CRAN:

5.88 score 34 stars 15 scripts 401 downloads 88 exports 12 dependencies

Last updated 2 months agofrom:6cdfcd20c6. Checks:OK: 3 NOTE: 4. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 22 2024
R-4.5-winOKNov 22 2024
R-4.5-linuxOKNov 22 2024
R-4.4-winNOTENov 22 2024
R-4.4-macNOTENov 22 2024
R-4.3-winNOTENov 22 2024
R-4.3-macNOTENov 22 2024

Exports:%>%add_countanti_joinarrangeas_fstas.data.tablechopCJcompletecopycountcummeandata.tabledelete_nadf_matdistinctdrop_nadummyexport_fstfcoalescefillfilterfilter_fstfreadfull_joinfwritegroup_bygroup_exegroupsimport_fstinner_joinlagleadleft_joinlongermat_dfmutatemutate_varsmutate_whennestnthobject_sizeparse_fstpullrbindlistread_csvrelocaterenamereplace_varsright_joinrleidrleidvrowwise_mutaterowwise_summariseselectselect_dtselect_fstselect_mixselect_varssemi_joinseparatesetDTsetnamesshift_fillsliceslice_fstslice_headslice_maxslice_minslice_sampleslice_tailsqueezesummarisesummarise_varssummarise_whensummary_fstsys_time_printtablestransmutetransposeunchopuncountungroupuniqueNuniteunnestutf8_encodingwider

Dependencies:clidata.tablefstfstcoregluelifecyclemagrittrRcpprlangstringistringrvctrs

Fastest data operations with least memory in tidy syntax

Rendered fromIntroduction.Rmdusingknitr::rmarkdownon Nov 22 2024.

Last update: 2024-09-23
Started: 2020-04-10

Readme and manuals

Help Manual

Help pageTopics
Arrange entries in data.framearrange
Save a data.frame as a fst tableas_fst
Complete a data frame with missing combinations of datacomplete
Count observations by groupadd_count count
Cumulative meancummean
Select distinct/unique rows in data.tabledistinct
Drop or delete data by rows or columnsdelete_na drop_na
Fast creation of dummy variablesdummy
Read and write fst filesexport_fst import_fst
Fill in missing values with previous or next valuefill shift_fill
Filter entries in data.framefilter
Parse,inspect and extract data.table from fst filefilter_fst fst parse_fst select_fst slice_fst summary_fst
Group by one or more variablesgroups group_by group_exe ungroup
Join tablesanti_join full_join inner_join left_join right_join semi_join
Fast lead/lag for vectorslag lead
Pivot data between long and widelonger wider
Conversion between tidy table and named matrixdf_mat mat_df
Create or transform variablesmutate mutate_vars mutate_when transmute
Nest and unnestchop nest squeeze unchop unnest
Extract the nth value from a vectornth
Nice printing of report the Space Allocated for an Objectobject_size
Pull out a single variablepull
Convenient file readerread_csv
Change column orderrelocate
Fast value replacement in data framereplace_vars
Computation by rowsrowwise_mutate rowwise_summarise
Select/rename variables by namerename select select_dt select_mix select_vars
Separate a character column into two columns using a regular expression separatorseparate
Subset rows using their positionsslice slice_head slice_max slice_min slice_sample slice_tail
Summarise columns to single valuessummarise summarise_vars summarise_when
Convenient print of time takensys_time_print
"Uncount" a data frameuncount
Unite multiple columns into one by pasting strings togetherunite
Use UTF-8 for character encoding in a data frameutf8_encoding